【高校数学】一緒に解こう三角関数の合成 4-15【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】一緒に解こう三角関数の合成 4-15【数学Ⅱ】

問題文全文(内容文):
(1) 0≦x<2πのとき、次の方程式を解け。
  sin x-$\sqrt{3}$cos x=1


(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
  y=sin x+cos x(0≦x≦2π)
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦x<2πのとき、次の方程式を解け。
  sin x-$\sqrt{3}$cos x=1


(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
  y=sin x+cos x(0≦x≦2π)
投稿日:2018.12.06

<関連動画>

福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である$\theta$
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと
ペナルティーエリアの左端までの距離をh(ただし、$h \lt a$とする)、Pからゴールライン
をx、Pの正面から右のゴールポストまでの角度を$\alpha$、Pの正面から左のゴールポスト
までの角を$\beta$としたとき、次頁の解放の文章を完成させなさい。

(解法)$\tan\theta$を最も大きくするxを求める問題と考えることができる。
$\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}$
$\tan\theta$の逆数を考えると、相加相乗平均の定理より
$\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}$
であり、$\frac{1}{\tan\theta}$が最小、すなわち$\tan\theta$が最大となるのは$x=\sqrt{\boxed{\ \ ケ\ \ }}$のときである。

(解法終わり)
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、
$x=\sqrt{\boxed{\ \ コ\ \ }}m$のときに、$\theta$が最も大きくなることが分かる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校2年生078〜三角関数(17)2直線のなす角(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(17) なす角(1)
2直線$y=3x-1, y=-2x+4$
のなす角$\theta(0 \lt \theta \lt \frac{\pi}{2})$を求めよ。
この動画を見る 

【数Ⅱ】三角関数:3倍角の公式笑っちゃう覚え方

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3倍角の公式笑っちゃう覚え方
この動画を見る 

横浜市立(医) 正二十面体 面のなす角 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'94横浜市立大学過去問題
(1)正五角形ABCDEの一辺を1としたときのAD=ACの長さ
(2)正二十面体のとなり合う面のなす角をθとしたときのcosθの値
この動画を見る 
PAGE TOP