大学入試問題#36 旭川医科大学(2020) 数列 - 質問解決D.B.(データベース)

大学入試問題#36 旭川医科大学(2020) 数列

問題文全文(内容文):
数列$\{p_n\},\{q_n\}$は
$\begin{eqnarray}
\left\{
\begin{array}{l}
p_{n+1}=\displaystyle \frac{1}{2}p_n+\displaystyle \frac{1}{4}q_n-\displaystyle \frac{1}{4} \\
q_{n+1}=\displaystyle \frac{1}{2}p_n+\displaystyle \frac{3}{4}q_n+\displaystyle \frac{1}{4}
\end{array}
\right.
\end{eqnarray}$ を満たす。
(1)
$p_n+q_n=p_1+q_1$を示せ

(2)
一般項$p_n$を$p_1,q_1$を用いて表せ

(3)
$\displaystyle \sum_{n=1}^\infty p_n=1$のとき、$p_1,q_1$の値を求めよ。

出典:2020年旭川医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{p_n\},\{q_n\}$は
$\begin{eqnarray}
\left\{
\begin{array}{l}
p_{n+1}=\displaystyle \frac{1}{2}p_n+\displaystyle \frac{1}{4}q_n-\displaystyle \frac{1}{4} \\
q_{n+1}=\displaystyle \frac{1}{2}p_n+\displaystyle \frac{3}{4}q_n+\displaystyle \frac{1}{4}
\end{array}
\right.
\end{eqnarray}$ を満たす。
(1)
$p_n+q_n=p_1+q_1$を示せ

(2)
一般項$p_n$を$p_1,q_1$を用いて表せ

(3)
$\displaystyle \sum_{n=1}^\infty p_n=1$のとき、$p_1,q_1$の値を求めよ。

出典:2020年旭川医科大学 入試問題
投稿日:2021.10.17

<関連動画>

福田の数学〜明治大学2022年全学部統一入試12AB第1問(1)〜空間図形の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)右図(※動画参照)のような正六面体$ABCD-EFGH$において、辺$FG$の中点を$M$とする。
このとき、三角形$CHM$の重心を$X$とすると、

$\overrightarrow{ AX }=\boxed{\ \ ア\ \ }\ \overrightarrow{ AB }+\boxed{\ \ イ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ AE }$
と表せ、直線$AG$と三角形$CHM$の交点を$Y$とすると

$\overrightarrow{ AY }=\boxed{\ \ エ\ \ }\ \overrightarrow{ AB }+\boxed{\ \ オ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ カ\ \ }\ \overrightarrow{ AE }$
と表せる。

解答群:$⓪\ 1 \ \ \ \ ①\ \frac{1}{2} \ \ \ \ ②\ \frac{1}{3} \ \ \ \ ③\ \frac{2}{3} \ \ \ \ ④\ \frac{1}{4} $
$⑤\ \frac{3}{4} \ \ \ \ ⑥\ \frac{1}{5} \ \ \ \ ⑦\ \frac{4}{5} \ \ \ \ ⑧\ \frac{1}{6} \ \ \ \ ⑨\ \frac{5}{6}$

2022明治大学全統過去問
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(2)〜6または8または9で割り切れる数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$n$を自然数とする。

$1$から$n$までの自然数の中で$6$または$8$または

$9$で割り切れるものの個数を$a_n$で表す。

このとき、$a_{30}=\boxed{ウ}$となる。

また、$a_n=1000$を満たす最大の$n$は$\boxed{エ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

#国士舘大学2022 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 6\sin\ x\ \tan^2x\ dx$

出典:2022年国士舘大学
この動画を見る 

福田の数学〜早稲田大学理工学部2025第5問〜無理関数のグラフ上に無数の有理点が存在する証明

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、

$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を

$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から

$x$を消去して得られる$y$についての$3$次方程式

$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を

$b'$とする。

ただし、$b'$が$3$重解のときは$b'=b$とみなす。

次の問いに答えよ。

(1)$2b+b'$を$k$のみの分数式で表せ。

(2)$b'$を$b$のみの分数式で表せ。

(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを

$P'(a',b')$とする。

$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを

示せ。

(4)$b$が奇数$p,q$と負でない整数$r$を用いて

$b=\dfrac{p}{2^r q}$で与えられるとする。

有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と

表すとき、$s$を$r$の式で表せ。

(5)$P(5,3)$が曲線$C$上の点であることを利用して、

$C$上に$x$座標と$y$座標がともに有理数であるような点が

無数に存在することを示せ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
この動画を見る 
PAGE TOP