福田のおもしろ数学433〜四面体に関する計量問題 - 質問解決D.B.(データベース)

福田のおもしろ数学433〜四面体に関する計量問題

問題文全文(内容文):

四面体$ABCD$において

$\angle ACB=45°$

$AD+BC+\dfrac{AC}{\sqrt2}=3$

体積$\dfrac{1}{6}$とする。

このとき$CD$を求めよ。

図は動画内参照
   
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

四面体$ABCD$において

$\angle ACB=45°$

$AD+BC+\dfrac{AC}{\sqrt2}=3$

体積$\dfrac{1}{6}$とする。

このとき$CD$を求めよ。

図は動画内参照
   
投稿日:2025.03.10

<関連動画>

福田の数学〜名古屋大学2023年文系第2問〜空間図形と体積の最小

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#式と証明#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。

2023名古屋大学文系過去問
この動画を見る 

もっちゃんとオイラーの公式を学ぶ 数学の魔術師も出演

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e^{i \pi}=-1$
この動画を見る 

ほぼ使わない正二十面体の書き方

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#その他#数学(高校生)#その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
正二十面体の書き方動画です
この動画を見る 

【数A】【難問】正二十面体の体積を求めよ。

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
教材: #チャート式#青チャートⅠ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1辺の長さが1の正二十面体の体積を求めなさい。
この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 
PAGE TOP