電卓アプリで遊んでみた - 質問解決D.B.(データベース)

電卓アプリで遊んでみた

問題文全文(内容文):
$n$は自然数であるとする。
$N=1^n+2^n+3^n+・・・・・・+2024^n$
$N$が8の倍数となる$n$の条件を求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数であるとする。
$N=1^n+2^n+3^n+・・・・・・+2024^n$
$N$が8の倍数となる$n$の条件を求めよ。
投稿日:2023.05.27

<関連動画>

東工大 ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は$10000$以下の自然数である.
$[\sqrt{n}]$が$n$の約数となる.$n$は何個あるか.

2012東工大過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は素数であり,$n$は自然数とする.これを解け.
$p^2+pq+q^2=n^2$
この動画を見る 

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.

20年5月数学検定1級1次試験(合同式)過去問
この動画を見る 

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る 

千葉大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
Pを素数、nを2以上の自然数
$x^n-P^nx-P^{n+1}=0$は整数解をもたないことを証明せよ。
この動画を見る 
PAGE TOP