名古屋市立大(医)漸化式 - 質問解決D.B.(データベース)

名古屋市立大(医)漸化式

問題文全文(内容文):
$n$を自然数とする.
$a_1=2$
$\dfrac{a_{n+1}}{a_n}=\dfrac{n}{n+2}$
$\displaystyle \sum_{n=1}^{\infty}a_n$を求めよ.

名古屋市立(医)過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$a_1=2$
$\dfrac{a_{n+1}}{a_n}=\dfrac{n}{n+2}$
$\displaystyle \sum_{n=1}^{\infty}a_n$を求めよ.

名古屋市立(医)過去問
投稿日:2021.07.20

<関連動画>

【数B】【数列】nは自然数とする。連立不等式0≦x≦n, y≧0, y≦n²-x²の表す領域に含まれる格子点の個数を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とする。連立不等式0≦x≦n, y≧0, y≦n²-x²の表す領域に含まれる格子点の個数を求めよ。
この動画を見る 

【数B】数列:漸化式の基本を解説シリーズその4 特殊解型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}+2a_{n}=1$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

【高校数学】 数B-65 等比数列とその和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
各項に一定の数$r$を掛けると,次の項が得られるとき,
この数列を等比数列といい,$r$をその公比という.
このとき,すべての自然数$n$について,①$a_{n+1}=\quad$が成り立つ.
また,初項$a$,公比$r$の等比数列$\{a_n \}$の一般項は
②$a_n=\quad$で求めることができる.

次の等比数列の$\Box$に適する数を入れ,一般項を求めよう.

③$1,3,9,\Box,\Box,・・・$

④$\Box,10,-20,\Box,-80,・・・$

⑤$3,1,\Box,\dfrac{1}{9},\Box,・・・$
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART1〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 

佐賀大 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
この動画を見る 
PAGE TOP