福田の数学〜早稲田大学2021年理工学部第2問〜整式の割り算と二項定理 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年理工学部第2問〜整式の割り算と二項定理

問題文全文(内容文):
${\Large\boxed{2}}$ 整式$f(x)=x^4-x^2+1$ について、以下の問いに答えよ。
(1)$x^6$を$f(x)$で割った時の余りを求めよ。
(2)$x^{2021}$を$f(x)$で割った時の余りを求めよ。
(3)自然数$n$が$3$の倍数であるとき、$(x^2-1)^n-1$
が$f(x)$で割りきれることを示せ。

2021早稲田大学理工学部過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 整式$f(x)=x^4-x^2+1$ について、以下の問いに答えよ。
(1)$x^6$を$f(x)$で割った時の余りを求めよ。
(2)$x^{2021}$を$f(x)$で割った時の余りを求めよ。
(3)自然数$n$が$3$の倍数であるとき、$(x^2-1)^n-1$
が$f(x)$で割りきれることを示せ。

2021早稲田大学理工学部過去問
投稿日:2021.05.25

<関連動画>

福田の数学〜早稲田大学2021年商学部第1問(3)〜相加相乗平均

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)正の実数$x,y,z$が
$\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1$
を満たすとき、$(x-1)(y-2)(z-3)$の最小値は$\boxed{\ \ ウ\ \ }$である。

2021早稲田大学商学部過去問
この動画を見る 

【数学Ⅱ/高2の予習】恒等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式が$x$についての恒等式となるように、定数$a,b,c$の値を求めよ。
(1)
$3x^2+8x+6=a(x+1)^2+b(x+1)+c$


(2)
$\displaystyle \frac{3}{(x-1)(2x+1)}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{b}{2x-1}$
この動画を見る 

聖マリアンナ医大 Σ4乗以上の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$\displaystyle \sum_{k=1}^{n}k^3=\left[\dfrac{n(n+1)}{2}\right]$を示せ.
②$(k+1)^5-k^5=5k^4+10k^3+10k^2+5k+1$を利用して
 $\displaystyle \sum_{k=1}^{n}k^4$は$n$の5次式で表せることを示せ.
③$\displaystyle \sum_{k=1}^n k^d$は$n$の$(d+1)$次式で表せることを示せ.

2019聖マリアンナ医大過去問
この動画を見る 

福田の1日1題わかった数学〜高校2年生第4回〜整式の割り算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 整式の割り算
$x^{100}+2x^{50}+3x^2+4$ を
$x^2+x+1$ で割った余りは?
この動画を見る 

いくつでしょうか?

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
この値を求めよ.
$2^{\frac{1}{4}}・4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}・・・・・・\infty$
この動画を見る 
PAGE TOP