【高校数学】高校数学 指数の基本計算の考え方【数学のコツ】 - 質問解決D.B.(データベース)

【高校数学】高校数学 指数の基本計算の考え方【数学のコツ】

問題文全文(内容文):
指数の基本計算の考え方を解説していきます.
チャプター:

0:00 基本ルール
3:26 マイナス乗について
4:15 分数乗について

単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
指数の基本計算の考え方を解説していきます.
投稿日:2024.07.18

<関連動画>

これ解ける?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$5^x=7^y=1225$
$\displaystyle \frac{xy}{x+y}$の値を求めよ
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]二つの関数f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2} について考える。\\
(1)f(0)=\boxed{\ \ セ\ \ }, g(0)=\boxed{\ \ ソ\ \ }\ である。また、f(x)は\\
相加平均と相乗平均の関係から、x=\boxed{\ \ タ\ \ }で最小値\boxed{\ \ チ\ \ }をとる。\\
g(x)=-2となるxの値は\log_2(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ })である。\\
\\
(2)次の①~④は、xにどのような値を代入しても常に成り立つ。\\
f(-x)=\boxed{\ \ ト\ \ } \ldots①  g(-x)=\boxed{\ \ ナ\ \ } \ldots②\\
\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{\ \ ニ\ \ } \ldots③  
g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x) \ldots④\\
\\
\boxed{\ \ ト\ \ }、\boxed{\ \ ナ\ \ }の解答群\\
⓪f(x)    ①-f(x)    ②g(x)    ③-g(x)
\\
\\
(3)花子:①~④は三角関数の性質に似ているね。\\
太郎:三角関数の加法定理に類似した式(\textrm{A})~(\textrm{D})を考えてみたけど、常に\\
成り立つ式はあるだろうか。\\
花子:成り立たない式を見つけるために、式(\textrm{A})~(\textrm{D})の\betaに\\
何か具体的な値を代入して調べてみたら?\\
\\
太郎さんが考えた式\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A}) 
f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C}) 
f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})\\
\\
(1),(2)で示されたことのいくつかを利用すると、式(\textrm{A})~(\textrm{D})のうち、\\
\boxed{\ \ ネ\ \ }以外の3つは成り立たないことが分かる。\boxed{\ \ ネ\ \ }は左辺と右辺を\\
それぞれ計算することによって成り立つことが確かめられる。\\
\\
\boxed{\ \ ネ\ \ }の解答群\\
⓪(\textrm{A})   ①(\textrm{B})   ②(\textrm{C})   ③(\textrm{D})
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

【数Ⅰ】数と式:次の計算をせよ。18ab²÷(-3ab)²×(-a²b)³

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。
$18ab^2\div(-3ab)^2\times(-a^2b)^3$
この動画を見る 

大阪教育大 指数関数の最小値 解の個数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#微分法と積分法#恒等式・等式・不等式の証明#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03大阪教育大学過去問題
x,a実数
$f(x)=4^x-6・2^x-6・2^{-x}+4^{-x}$
(1)f(x)の最小値
(2)f(x)=aとなるようなxの個数
この動画を見る 

福田のわかった数学〜高校2年生090〜指数対数(3)指数法則を使う計算(3)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(3) 指数法則(3)\\
(1)a^{2x}=5のとき\frac{a^x-a^{-x}}{a^x+a^{-x}}, \frac{a^{3x}-a^{-3x}}{a^{3x}+a^{-3x}}を求めよ。\\
(2)a^{3x}-a^{-3x}=14のときa^x-a^{-x}, a^x+a^{-x}を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP