問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 実数xに対し、関数f(x)を\hspace{233pt}\\
f(x)=xe^{-x}\hspace{203pt}\\
により定める。座標平面上の曲線C:y=f(x)に関して、次の問(1)~(5)に答えよ。\hspace{7pt}\\
(1)f(x)の導関数f'(x)を求め、f(x)の増減表を書け。ただし、極値も記入すること。\\
(2)f(x)の第2次導関数f''(x)を求め、Cの変曲点の座標を求めよ。\hspace{75pt}\\
(3)Cの変曲点と、座標平面上の原点を通る直線をlとする。\hspace{102pt}\\
Cとlで囲まれた領域の面積Sを求めよ。\hspace{175pt}\\
(4)a,\ b,\ cを定数とし、関数g(x)をg(x)=(ax^2+bx+c)e^{-2x}と定める。\hspace{43pt}\\
g(x)の導関数g'(x)がg'(x)=x^2e^{-2x}を満たすとき、a,\ b,\ cの値を求めよ。\hspace{29pt}\\
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる\hspace{61pt}\\
回転体の体積Vを求めよ。\hspace{222pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{2}}\ 実数xに対し、関数f(x)を\hspace{233pt}\\
f(x)=xe^{-x}\hspace{203pt}\\
により定める。座標平面上の曲線C:y=f(x)に関して、次の問(1)~(5)に答えよ。\hspace{7pt}\\
(1)f(x)の導関数f'(x)を求め、f(x)の増減表を書け。ただし、極値も記入すること。\\
(2)f(x)の第2次導関数f''(x)を求め、Cの変曲点の座標を求めよ。\hspace{75pt}\\
(3)Cの変曲点と、座標平面上の原点を通る直線をlとする。\hspace{102pt}\\
Cとlで囲まれた領域の面積Sを求めよ。\hspace{175pt}\\
(4)a,\ b,\ cを定数とし、関数g(x)をg(x)=(ax^2+bx+c)e^{-2x}と定める。\hspace{43pt}\\
g(x)の導関数g'(x)がg'(x)=x^2e^{-2x}を満たすとき、a,\ b,\ cの値を求めよ。\hspace{29pt}\\
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる\hspace{61pt}\\
回転体の体積Vを求めよ。\hspace{222pt}
\end{eqnarray}
2022立教大学理学部過去問
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 実数xに対し、関数f(x)を\hspace{233pt}\\
f(x)=xe^{-x}\hspace{203pt}\\
により定める。座標平面上の曲線C:y=f(x)に関して、次の問(1)~(5)に答えよ。\hspace{7pt}\\
(1)f(x)の導関数f'(x)を求め、f(x)の増減表を書け。ただし、極値も記入すること。\\
(2)f(x)の第2次導関数f''(x)を求め、Cの変曲点の座標を求めよ。\hspace{75pt}\\
(3)Cの変曲点と、座標平面上の原点を通る直線をlとする。\hspace{102pt}\\
Cとlで囲まれた領域の面積Sを求めよ。\hspace{175pt}\\
(4)a,\ b,\ cを定数とし、関数g(x)をg(x)=(ax^2+bx+c)e^{-2x}と定める。\hspace{43pt}\\
g(x)の導関数g'(x)がg'(x)=x^2e^{-2x}を満たすとき、a,\ b,\ cの値を求めよ。\hspace{29pt}\\
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる\hspace{61pt}\\
回転体の体積Vを求めよ。\hspace{222pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{2}}\ 実数xに対し、関数f(x)を\hspace{233pt}\\
f(x)=xe^{-x}\hspace{203pt}\\
により定める。座標平面上の曲線C:y=f(x)に関して、次の問(1)~(5)に答えよ。\hspace{7pt}\\
(1)f(x)の導関数f'(x)を求め、f(x)の増減表を書け。ただし、極値も記入すること。\\
(2)f(x)の第2次導関数f''(x)を求め、Cの変曲点の座標を求めよ。\hspace{75pt}\\
(3)Cの変曲点と、座標平面上の原点を通る直線をlとする。\hspace{102pt}\\
Cとlで囲まれた領域の面積Sを求めよ。\hspace{175pt}\\
(4)a,\ b,\ cを定数とし、関数g(x)をg(x)=(ax^2+bx+c)e^{-2x}と定める。\hspace{43pt}\\
g(x)の導関数g'(x)がg'(x)=x^2e^{-2x}を満たすとき、a,\ b,\ cの値を求めよ。\hspace{29pt}\\
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる\hspace{61pt}\\
回転体の体積Vを求めよ。\hspace{222pt}
\end{eqnarray}
2022立教大学理学部過去問
投稿日:2022.09.15