東大 ヨビノリのタクミ先生 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東大 ヨビノリのタクミ先生 Mathematics Japanese university entrance exam

問題文全文(内容文):
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ

出典:1997年東京大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ

出典:1997年東京大学 過去問
投稿日:2019.04.01

<関連動画>

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
この動画を見る 

この球々はなんや?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値のグラフの説明動画です
この動画を見る 

2024年の2次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x(x+2)=2024$
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの放物線$y=x^2+mx+3m,y=x^2-mx+m^2-3$が、いずれも$x$軸と共有点をもたないとき、定数$m$の値の範囲を求めよ。

2つの2次方程式$x^2+mx+m=0$・・・・・・①、$x^2-2mx+m+6=0$・・・・・・②がある。次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
この動画を見る 

【#8】【因数分解100問】基礎から応用まで!(71)〜(80)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(76)$(2x-3y+1)(3x+2y-1)$
(77)$(3x-4y)^2$
(78)$(x-y-1)(x^2+y^2+1+xy+x-y)$
(79)$(x^2+4x+6)(x^2+8x+6)$
(80)$-3(2x-1)(x-3)(x+2)$
この動画を見る 
PAGE TOP