問題文全文(内容文):
長さlの線分が、その両端を放物線y=x^2にのせて動く。この線分の中点Mがx軸に最も近い場合のMの座標を求めよ。ただし、l≧1とする。
長さlの線分が、その両端を放物線y=x^2にのせて動く。この線分の中点Mがx軸に最も近い場合のMの座標を求めよ。ただし、l≧1とする。
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
長さlの線分が、その両端を放物線y=x^2にのせて動く。この線分の中点Mがx軸に最も近い場合のMの座標を求めよ。ただし、l≧1とする。
長さlの線分が、その両端を放物線y=x^2にのせて動く。この線分の中点Mがx軸に最も近い場合のMの座標を求めよ。ただし、l≧1とする。
投稿日:2024.12.19





