【高校数学】条件付き確率~基本の考えと使い方~ 2-7【数学A】 - 質問解決D.B.(データベース)

【高校数学】条件付き確率~基本の考えと使い方~ 2-7【数学A】

問題文全文(内容文):
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。

選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
チャプター:

00:00 はじまり

00:21 言葉の説明

02:38 例題演習

05:35 まとめ

05:53 まとめノート

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。

選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
投稿日:2020.08.08

<関連動画>

福田のわかった数学〜高校1年生062〜場合の数(1)正n角形の対角線と三角形の個数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(1) 正n角形
$正\ n\ 角形A_1A_2\ldots A_n (n \geqq 4)$について次を求めよ。
(1)対角線の本数
(2)頂点を結んでできる三角形で正n角形$A_1A_2\ldots A_n$
と辺を教習しないものの個数
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
この動画を見る 

近畿大(医)確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.

2021近畿大(医)
この動画を見る 

見掛け倒しの「どっちがでかい?」

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$P_{2022} vs P_{2023}$

$P_n$はサイコロをn回ふって出た目の和が7の倍数になる確率を求めよ.
この動画を見る 

場合の数 集合の基本~ベン図を描こう~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。Uの部分集合A,Bについて、
$A∩B={2}$,(Aの補集合)$∩B={2,4,6,8}$,(Aの補集合)$∩$(Bの補集合)$={1,9}$であるとき、次の集合を求めよ。
(1)$A∪B$       (2)$B$        (3)$A∩$(Bの補集合)

U={$x\vert 1\leqq x\leqq 10$,xは整数}を全体集合とする。Uの部分集合
$A={1,2,3,4,8},B={3,4,5,6},C={2,3,6,7}$について、次の集合を求めよ。
(1)$A∩B∩C$ (2)$A∪B∪C$ (3)$A∩B∩$(Cの補集合) (4)(Aの補集合)$∩B∩$(Cの補集合) (5)($A∩B∩C$の補集合) (6)$(A∪C)∩$(Bの補集合)

$A={1,3,3a-2},B={-5,a+2,a^2-2a+1},A∩B={1,4}$のとき、
定数aの値と和集合$A∪B$を求めよ
この動画を見る 
PAGE TOP