素数に関する問題 明治学院 - 質問解決D.B.(データベース)

素数に関する問題 明治学院

問題文全文(内容文):
m,nを1ケタの自然数とする。
(m+n)(n-2)が素数となる(m,n)の組はいくつあるか。

明治学院高等学校
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
m,nを1ケタの自然数とする。
(m+n)(n-2)が素数となる(m,n)の組はいくつあるか。

明治学院高等学校
投稿日:2023.09.29

<関連動画>

暗算?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
x23x+1=0のとき,
x30+1x30の値を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
2 (1)複素数αα2+3α+3=0 を満たすとする。このとき、(α+1)2(α+2)5=    
である。また、(α+2)s(α+3)t=3となる整数s,tの組を全て求めよ。

(2)多項式(x+1)3(x+2)2x2+3x+3で割った時の商は    、余りは    である。
また、(x+1)2021x2+3x+3で割った時の余りは    である。

2021慶應義塾大学理工学部過去問
この動画を見る 

【高校数学】 数Ⅱ-25 複素数③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の複素数と共役な複素数を書こう。

72i

2+9i

3i

6

◎次の式を計算して、a+bi(a,bは実数)の形にしよう。

7+i1+3i

2+3i2+i

2i3i
この動画を見る 

立教大 複素数基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Z=cos27π+isin27π
a=Z+1Z
b=Z2+1Z2
c=Z2+1Z3
a3+b3+c33abの値を求めよ.

2021立教大過去問
この動画を見る 

2021一橋大 素数の個数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1000以下の素数は250個以下であることを示せ.

2021一橋大過去問
この動画を見る 
PAGE TOP preload imagepreload image