大学入試問題#898「教科書例題」 #千葉大学(2024) - 質問解決D.B.(データベース)

大学入試問題#898「教科書例題」 #千葉大学(2024)

問題文全文(内容文):
次の等式を満たす$x \gt 0$で定義された関数$f(x)$と定数$a$の値を求めよ。
ただし、$a \gt 0$とする。
$\displaystyle \int_{a}^{x} f(t) dt=x+\displaystyle \frac{1}{2}log$ $x-1$

出典:2024年千葉大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす$x \gt 0$で定義された関数$f(x)$と定数$a$の値を求めよ。
ただし、$a \gt 0$とする。
$\displaystyle \int_{a}^{x} f(t) dt=x+\displaystyle \frac{1}{2}log$ $x-1$

出典:2024年千葉大学
投稿日:2024.08.08

<関連動画>

福田の数学〜京都大学2025理系第1問(2−1)〜定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2-1)次の定積分の値を求めよ。

$\displaystyle \int_{0}^{\sqrt3} \dfrac{x\sqrt{x^2+1}+2x^3+1}{x^2+1}dx$

$2025$年京都大学理系過去問題
この動画を見る 

大学入試問題#799「もう詰んでます!」 #大阪公立大学(2024) #定積分 #King_property

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#大阪公立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{\sqrt{ 3 }} \displaystyle \frac{log(1+x^2)}{1+e^x} dx$

出典:2024年大阪公立大学
この動画を見る 

#会津大学(2009) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (3x^3-1)log\ x\ dx$

出典:2009年会津大学
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(6)〜絶対値の付いた定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の定積分の値を求めよ。
$\displaystyle \int_{0}^{4} |x^2-2x-3| dx$

2023中央大学経済学部過去問
この動画を見る 

福田の数学〜一橋大学2025文系第3問〜定積分で表された方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

等式

$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$

が成り立つ実数$a$がちょうど$4$つ存在するような

実数$k$の範囲を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 
PAGE TOP