【数Ⅱ】【微分法と積分法】接線で囲まれた面積 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】接線で囲まれた面積 ※問題文は概要欄

問題文全文(内容文):
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
チャプター:

0:00 オープニング
0:05 問題文、解説
3:13 別解
4:32 エンディング

単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
投稿日:2025.03.14

<関連動画>

【数Ⅱ】【微分法と積分法】放物線と直線で囲まれた図形の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線と直線で囲まれた図形の面積Sを求めよ。
(1) $y=x^2-4x-2,x$軸
(2) $y=x^2+x,y=1-x$
(3) $y=|x^2-x-2|,y=x+1$
この動画を見る 

【短時間でポイントチェック!!】定積分 1/6公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2\{(x+2)-x^2\}dx$
この動画を見る 

高専数学 微積I #211 体積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
半径$r$の直円柱を底面の直径$AB$を通り
底面と$\dfrac{\pi}{6}$の角をなす平面で切るとき,
底面と平面の間の部分の体積$V$を求めよ.
この動画を見る 

東大 大島さんと数学 球の体積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
球の体積の求め方を解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第4問〜ピラミッドを切って体積を求める

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$(1)$xyz$空間において$|x|+|y|+|z| \leqq 1$を満たす立体の体積は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
(2)aを実数としたとき、xyz空間において
$|x-a|+|y-a|+|z| \leqq 1,\ \ \ x \geqq 0,\ \ \ y \geqq 0,\ \ \ z \geqq 0$
を満たす立体の体積V(a)は

$(\textrm{a})a \lt \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$のとき、$V(a)=0$,
$(\textrm{b})\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }} \leqq a \lt 0$のとき、
$V(a)=\frac{\boxed{\ \ ケコ\ \ }a^3+\boxed{\ \ サシ\ \ }a^2+\boxed{\ \ スセ\ \ }a+\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }},$

$(\textrm{c})0 \leqq a \lt \frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ ヌネ\ \ }a^3+\boxed{\ \ ノハ\ \ }a+\boxed{\ \ ヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }},$

$(\textrm{d})\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }} \leqq a \lt \frac{\boxed{\ \ マミ\ \ }}{\boxe$d{\ \ ムメ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ モヤ\ \ }a^3+\boxed{\ \ ユヨ\ \ }a^2+\boxed{\ \ ラリ\ \ }a}{\boxed{\ \ ルレ\ \ }},$

$(\textrm{e})\frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }} \leqq a$のとき、
$V(a)=\frac{\boxed{\ \ ロワ\ \ }}{\boxed{\ \ ヲン\ \ }}$

2022慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP