福田の数学〜九州大学2025理系第2問〜定積分の計算 - 質問解決D.B.(データベース)

福田の数学〜九州大学2025理系第2問〜定積分の計算

問題文全文(内容文):

$\boxed{2}$

以下の問いに答えよ。

(1)$y=\tan x$とするとき、

$\dfrac{dy}{dx}$を$y$の整式で表せ。

(2)次の定積分を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{\tan^4x-\tan^2 x-2}{\tan^2x-4}dx$

$2025$年九州大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

以下の問いに答えよ。

(1)$y=\tan x$とするとき、

$\dfrac{dy}{dx}$を$y$の整式で表せ。

(2)次の定積分を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{\tan^4x-\tan^2 x-2}{\tan^2x-4}dx$

$2025$年九州大学理系過去問題
投稿日:2025.06.27

<関連動画>

#関西大学2024#不定積分_35

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{x^3+2x}{x^2+1} dx$
を解け.

2024関西大学過去問題
この動画を見る 

絶対に落としたくない問題です【自治医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。


自治医科大過去問
この動画を見る 

高専数学 微積II #32(2) 級数の収束条件

単元: #数Ⅱ#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{(1+x)^{n-1}}$
が収束するように$x$の範囲を定め,
その和を求めよ.
この動画を見る 

福田のおもしろ数学301〜4次方程式の解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x ^ 4 - 18x ^ 3 + k x ^ 2 + 200x - 1984 = 0 $の2つの解の積が$-32$のとき、実数$k$の値は?
この動画を見る 

数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
この動画を見る 
PAGE TOP