【高校数学】数Ⅲ-124 変曲点とグラフの対称性 - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-124 変曲点とグラフの対称性

問題文全文(内容文):
数Ⅲ(変曲点とグラフの対称性)
Q. 曲線$C:y=x^3+3ax+b$について次の問いに答えよ。

①Cの変曲点Pの座標を求めよ。
②Cは点Pに関して点対称であることを示せ。
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(変曲点とグラフの対称性)
Q. 曲線$C:y=x^3+3ax+b$について次の問いに答えよ。

①Cの変曲点Pの座標を求めよ。
②Cは点Pに関して点対称であることを示せ。
投稿日:2018.12.16

<関連動画>

微分方程式⑨【連立微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{dx}{dt}=4y-\cos t \\
\dfrac{dy}{dt}=-x+\sin t
\end{array}
\right.
\end{eqnarray}$

これを解け.
この動画を見る 

東北大 積分

アイキャッチ画像
単元: #微分とその応用#積分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=-x^3-2x^2+a$と$y=x^3-16x$は$x$座標が負の点で共有点をもち、その点で共通接線をもつ。
$a$の値と囲まれた面積を求めよ

出典:1996年東北大学 過去問
この動画を見る 

福田のおもしろ数学437〜連立不等式の表す立体の体積

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
x \geqq 0,z \geqq 0 \quad \cdots ① \\
x+y \leqq 1 \qquad \cdots② \\\
z^2\leqq y-x \quad \cdots ③
\end{array}
\right.
\end{eqnarray}$

を満たす点$(x,y,z)$の集合からなる

立体の体積を求めよ。
   
この動画を見る 

三重県教員採用試験(数学 対数の連立方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_x y=2 \\
\log_2 (x+1)+\log_2 (y-1)=5
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。

2018京都大学理系過去問
この動画を見る 
PAGE TOP