問題文全文(内容文):
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$xyz=0$のとき$T$の値の範囲を求めよ。
($x,y,z$:実数)
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$xyz=0$のとき$T$の値の範囲を求めよ。
($x,y,z$:実数)
チャプター:
00:00 イントロ(問題紹介)
00:22 本編スタート
06:56 作成した解答①
07:07 作成した解答②
07:15 エンディング(楽曲提供:兄いえてぃさん)
単元:
#積分とその応用#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$xyz=0$のとき$T$の値の範囲を求めよ。
($x,y,z$:実数)
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$xyz=0$のとき$T$の値の範囲を求めよ。
($x,y,z$:実数)
投稿日:2023.02.22





