13神奈川県教員採用試験(数学:9番 数列の極限値) - 質問解決D.B.(データベース)

13神奈川県教員採用試験(数学:9番 数列の極限値)

問題文全文(内容文):
9⃣$a_1=1,a_2=2,(a_{n+2})^5 =(a_{n+1})^4・a_n$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
単元: #関数と極限#数列の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
9⃣$a_1=1,a_2=2,(a_{n+2})^5 =(a_{n+1})^4・a_n$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
投稿日:2020.10.14

<関連動画>

福田の数学〜東北大学2025理系第3問〜4次関数が極大値をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a$を実数とし、関数$f(x)$を次のように定める。

$f(x)=x^4+\dfrac{4a}{3}x^3+(a+2)x^2$

このとき、以下の問いに答えよ。

(1)関数$f(x)$が極大値をもつような$a$のとり得る

値の範囲を求めよ。

(2)関数$f(x)$が$x=0$で極大値をもつような

$a$のとり得る値の範囲を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1993年 国立大学法人京都大学

$f(x)=x^3-3ax$

$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
この動画を見る 

中学からの極限(基礎編)!~全国入試問題解法 #数学 #極限 #微分積分 #頭の体操

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to \infty}\dfrac{5x^2+x+4}{x^2+2x+3}$を求めよ.
この動画を見る 

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第1問(3)〜無限級数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$k$を自然数として、
$f(x)=\sum_{n=1}^{\infty}\frac{x^{2k}}{(1+4x^{2k})^{n-1}}$
とおく。このとき、$\lim_{x \to 0}f(x)=\boxed{カ}$となる。

$\boxed{カ}$の解答群
$⓪0 ①1 ②2 ③\frac{1}{2} ④4$
$⑤\frac{1}{4} ⑥2^k ⑦\frac{1}{2^k} ⑧4^k ⑨\frac{1}{4^k}$

2022明治大学全統理系過去問
この動画を見る 
PAGE TOP