【数学B/テスト対策】等差数列の一般項と和 - 質問解決D.B.(データベース)

【数学B/テスト対策】等差数列の一般項と和

問題文全文(内容文):
等差数列$-2,1,4,7,10…$について、次の問いに答えよ。
(1)一般項$a_n$を求めよ。
(2)第100項$a_{100}$を求めよ。
(3)初項から第$n$項までの和$S_n$を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
等差数列$-2,1,4,7,10…$について、次の問いに答えよ。
(1)一般項$a_n$を求めよ。
(2)第100項$a_{100}$を求めよ。
(3)初項から第$n$項までの和$S_n$を求めよ。
投稿日:2021.08.17

<関連動画>

福田の1.5倍速演習〜合格する重要問題065〜中央大学2019年度理工学部第3問〜反復試行と確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$ Oを原点とする平面上の動点Rが$R_0$(1, 0)から出発して、単位円の周上を1秒ごとに反時計周りに移動する。移動するときの動径ORの回転角は、確率$\frac{1}{2}$で$\frac{\pi}{6}$、確率$\frac{1}{2}$で$\frac{\pi}{3}$である。n秒後のRの位置を$R_n$とする。以下の問いに答えよ。
(1)$R_5$が(-1, 0)である確率を求めよ。
(2)$R_9$がx軸上にある確率を求めよ。
次に、$R_n$がx軸上またはy軸上にある確率を$p_n$(n≧1)とする。
(3)$p_{n+1}$を$p_n$を用いて表せ。
(4)$p_n$を求めよ。

2019中央大学理工学部過去問
この動画を見る 

福田のおもしろ数学190〜数列の和と部分分数分解

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n \frac {5^k(4k-1)}{k(k+1)}$を求めよ。
この動画を見る 

等比数列の和を1から解説

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$3+3^2+3^3+ \cdots +3^7$ $(3^8=6561)$
この動画を見る 

【数B】数列:a1=1,a[n+1]=(a[n]-4)/(a[n]-3) (n=1,2,...)で定められた数列について次の問に答えよ。(1)a2,a3,a4を求め一般項a[n]を推定せよ 他

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
この動画を見る 

山梨大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n+1}=2^{n^2-25n-12}a_{n}$

(1)
一般項を求めよ

(2)
$a_{n} \gt 1$となる最小の$n$

出典:山梨大学 過去問
この動画を見る 
PAGE TOP