17奈良県教員採用試験(数学:1-4番 微積) - 質問解決D.B.(データベース)

17奈良県教員採用試験(数学:1-4番 微積)

問題文全文(内容文):
1⃣(4)$f(x)=e^x- \int_0^1t f(t) dt$
関数f(x)を求めよ。
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1⃣(4)$f(x)=e^x- \int_0^1t f(t) dt$
関数f(x)を求めよ。
投稿日:2020.09.19

<関連動画>

【高校数学】宇都宮大学の積分の問題をその場で解説しながら解いてみた!毎日積分97日目~47都道府県制覇への道~【㊵栃木】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【宇都宮大学 2023】
関数$f(x)=|x-1|, g(x)=e^{-2x+1}$により定まる座標平面上の曲線$y=(f\circ g)(x)$を$C$とする。ただし、$e$は自然対数の底で$e=2.71828…$である。次の問いに答えよ。
(1) $(f\circ g)(0)$および$\displaystyle \lim_{x \to \infty}(f\circ g)(x)$を求めよ。
(2) 座標平面上に曲線$C$の概形を図示せよ。
(3) $\displaystyle \frac{1}{2}<t<1$を満たす実数$t$に対し、$\displaystyle F(t)=(f\circ g)(\frac{t}{2})+(f\circ g)(t)$と定める。$F(t)$の増減を調べ、極値およびそのときの$t$の値を求めよ。
(4) 曲線$C$と直線$\displaystyle l:y=\frac{1}{2}$で囲まれる部分の面積$S$を求めよ。
この動画を見る 

#61数検1級1次「よくできた問題」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$(x-1)^7-(x^7-1)$を実数係数の範囲で因数分解せよ

出典:数検1級1次
この動画を見る 

青山学院大学(2007年) #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{x^2+1}{x+1} dx$

出典:2007年青山学院大学
この動画を見る 

大学入試問題#568「素直に正面突破」 東京帝国大学(1968) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{ \infty } \displaystyle \frac{xe^{-x}}{(1+e^{-x})^2}\ dx$

出典:1938年東京帝国大学 入試問題
この動画を見る 

会津大学2014 #定積分 #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x\sqrt{ e^x-1 }\ dx$

出典:2019年会津大学
この動画を見る 
PAGE TOP