福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率

問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。

(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。

(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。

2019慶應義塾大学商学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。

(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。

(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。

2019慶應義塾大学商学部過去問
投稿日:2023.01.11

<関連動画>

福田の数学〜中央大学2021年経済学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$1辺の長さが1の正方形の頂点を時計回りにA,B,C,Dとする。点PはAから
出発し、硬貨を投げるたびに正方形の周上を時計回りに動く。1枚の硬貨を投げて
表が出たときにはPは2だけ進み、裏が出たときにはPは1だけ進む。硬貨を投げた
ときに、表と裏の出る確率は等しいとする。このとき以下の問いに答えよ。

(1)硬貨を5回続けて投げたとき、PがAにいる確率を求めよ。
(2)硬貨を10回続けて投げたとき、PがDにいる確率を求めよ。

2021中央大学経済学部過去問
この動画を見る 

大阪医科大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
黒石3個と白石7個を一列に並べる。
この列が、「2つ以上の連続した白石の両端に黒石がある」という部分を含む確率は?

大阪医科大過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に
$X_1,X_2,\ldots\ldots,X_n$とする。$X_1,X_2,\ldots\ldots,X_n$の最小公倍数を$L_n$,
最大公約数を$G_n$とするとき、以下の問いに答えよ。
(1)$L_2=5$となる確率および$G_2=5$となる確率を求めよ。
(2)$L_n$が素数でない確率を求めよ。
(3)$G_n$が素数でない確率を求めよ。

2022大阪大学文系過去問
この動画を見る 

【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
この動画を見る 

東大入試問題、場合の数、頑張れば、中学生、中学受験生にも解けるぞ Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ相異なるなる入れ方の総数を求めたい。

(1)1からnまで異なる番号のついたこのボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか 。

(2)互いに区別のつかないn個のボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

東大過去問
この動画を見る 
PAGE TOP