補助線を引く喜びを - 質問解決D.B.(データベース)

補助線を引く喜びを

問題文全文(内容文):
△ABC=?
*図は動画内参照

開明高等学校
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照

開明高等学校
投稿日:2021.10.01

<関連動画>

【数学A/整数】ユークリッドの互除法(文字式)

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$7n+6$と$2n+3$の最大公約数が$3$になるような$20$以下の自然数$n$をすべて求めよ。
この動画を見る 

図形の性質 円の位置関係【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線$ℓ 、m$ と異なる2つの平面$\alpha,\beta$について,
次の記述は常に正しいか。
(1) $\ell⊥\alpha、m⊥\alpha$ならば、$ℓ⊥m$である。
(2) $\ell ⊥\alpha、m⊥\alpha$ならば、$\alpha //\beta$である。
(3) $\ell //\alpha、m//\alpha$ならば、$\ell //m$である。
(4) $\ell //\alpha、m⊥\alpha$ならば、$\ell$と並行で$m$と垂直な直線がある。

正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形$ABCDEF$ について,
辺$AB$ と平行な辺を答えよ。

立方体について、次の問いに答えよ。
(1) 辺$BF$ と垂直な面をすべて答えよ。
(2) 平面 $BFHD$ と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面$ABGH$と垂直な面をすべて答えよ。
この動画を見る 

もはやパズル!!三平方の定理禁止!!大阪教育大附属天王寺中

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A + B = ▢ ㎠
*図は動画内参照

大阪教育大学付属天王寺中学校
この動画を見る 

2023東大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
黒3,赤4,白5を一列に並べる.
(1)どの赤も隣り合わない確率を求めよ.
(2)どの赤も隣り合わないとき、どの黒も隣り合わない条件付き確率を求めよ.

2023東大過去問
この動画を見る 

福田の数学〜効率よく数えることが大切〜慶應義塾大学2023年環境情報学部第4問〜移動する2点が接触しない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
xy平面上でx座標もリ座標も整数である点を格子点という。この格子点上を次のように点 A と点 B が移動する。
・点 A は、時刻t= 0 において原点 O にあり、時刻tが 1 増えるごとに、x軸正方向に 1 あるいはy軸正方向に 1 のいずれかに等確率$\frac{1}{2}$で移動する。
・点 B は、時刻t= 0 において点( 1 , I) にあり、時刻 t が 1 増えるごとに、x軸正方向に 1 あるいはx軸負方向に 1 あるいはy軸正方向に 1 あるいはy軸負方向に 1のいずれかに等確率$\frac{1}{4}$で移動する。
ここで、時刻 t= k(k= 0 , 1 , 2 , 3 ,・・・)以前に点 A と点 B が一度も接触しない(同じ時刻に同じ座標を取らない)確率を P (k)とする。
(1)k0,1,2のとき、P(0)=1、P(1)=$\dfrac{\fbox{ア}}{\fbox{イ}}$,P(2)=$\dfrac{\fbox{ウ}}{\fbox{エ}}$である。
(2)k=3のとき、
(a)点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 3 , 0 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{オ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{カ}$通り。
(b) 点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 2 , l) に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{キ}$通り。 3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{ク}$通り。
(c) 点 A が点( 1 , 0 )と点( 1 , 1) を経由して点( 2 , 1 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
(d) 点 A が点( 0 , 1) と点( 1 , 1) を経由して点( 2 , 1) に移動する場合、 t= 3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
であるから、$P(3)=\dfrac{\fbox{サ}}{\fbox{シ}}$である。

2023慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP