奈良県立医大 長方形の面積の最大値 - 質問解決D.B.(データベース)

奈良県立医大 長方形の面積の最大値

問題文全文(内容文):
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ

出典:奈良県立医科大学 問題
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ

出典:奈良県立医科大学 問題
投稿日:2019.08.07

<関連動画>

式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2023 \\
x^3+y^3=1930
\end{array}
\right.
\end{eqnarray}$

$x+y=?$
この動画を見る 

高校数学 ルートを外せ!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt {a^6b^2} = ?$
($a<0 , b>0$)
この動画を見る 

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。

2023明治大学理工学部過去問
この動画を見る 

【高校数学】  数Ⅰ-76  三角比① ・ 基本編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \lt \theta \lt 90°$のとき、右の図について
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____

◎図のような直角三角形において$\sin \theta,\cos \theta,tan \theta$の値をそれぞれ求めよう。



※図は動画内参照
この動画を見る 

平方根の方程式 あれに気をつけて

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{6x+7}-\sqrt{9x+1}=1$
これを解け.
この動画を見る 
PAGE TOP