”ちゃんと“解けた受験生っていない気がする。。。渋谷幕張 - 質問解決D.B.(データベース)

”ちゃんと“解けた受験生っていない気がする。。。渋谷幕張

問題文全文(内容文):
$x+\frac{1}{x}=5-\sqrt 5$のとき
$\frac{\sqrt{x^4-10x^3+25x^2-10x+1}}{x}$

渋谷教育学園幕張
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+\frac{1}{x}=5-\sqrt 5$のとき
$\frac{\sqrt{x^4-10x^3+25x^2-10x+1}}{x}$

渋谷教育学園幕張
投稿日:2021.10.07

<関連動画>

【数Ⅰ】【図形と計量】0°≦θ≦180°とする。次の不等式を満たすもの値の範囲を求めよ。-1<√3 tanθ <3 (他8問)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。


$\sin\theta > \dfrac{1}{\sqrt{2}}$

$\sin\theta \leq \dfrac{1}{2}$

$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$

$\cos\theta < -\dfrac{1}{\sqrt{2}}$

$0 < \tan\theta \leq 1$

$\tan\theta \geq \sqrt{3}$

$1 < 2\sin\theta \leq \sqrt{3}$

$1 \leq -2\cos\theta < \sqrt{3}$

$-1 < \sqrt{3}\tan\theta < 3$
この動画を見る 

【数学Ⅰ/三角比】円に内接する四角形②

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円に内接する四角形$ABCD$がある。
$AB=\sqrt{ 7 },BC=2\sqrt{ 7 },CD=\sqrt{ 3 },DA=2\sqrt{ 3 }$のとき、次のものを求めよ。

(1)
$\cos\angle ABC$

(2)
対角線$AC$の長さ

(3)
四角形$ABCD$の面積$S$
この動画を見る 

志木の展開

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
展開せよ
$(x+1)^2(x-1)^2(x^2+1)^2$

慶應義塾志木高等学校
この動画を見る 

素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
25002401
素因数分解せよ
この動画を見る 

【高校数学】数Ⅰ-18 1次不等式②(練習編)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
この動画を見る 
PAGE TOP