整数問題 2024福岡大附属大濠 - 質問解決D.B.(データベース)

整数問題 2024福岡大附属大濠

問題文全文(内容文):
x-1が9の倍数であるとき$x^2$を3で割った余りは?

2024福岡大学附属大濠高等学校
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x-1が9の倍数であるとき$x^2$を3で割った余りは?

2024福岡大学附属大濠高等学校
投稿日:2024.02.06

<関連動画>

筑波大附属の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
8a=5bを満たす自然数a,bの中で積abが100の倍数となる最も小さいaは?

筑波大学附属高等学校
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(1)〜素因数分解と変数の値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。                          \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。         \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

ただの分数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
この動画を見る 

大学入試問題#447「まあ、沼にはまるよね」 昭和医科大学(2021) #方程式の応用

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$(\sqrt{ n^2-9n+19 })^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ。

出典:2021年昭和大学医学部 入試問題
この動画を見る 
PAGE TOP