問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}Oを原点とする座標平面上の放物線C:y=x^2とC上の点P(\frac{\sqrt3}{2}, \ \frac{3}{4})がある。\hspace{10pt}\\
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。\hspace{30pt}\\
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。\hspace{59pt}\\
(1)mの方程式をy=px+qとするとき、定数p,qの値を求めよ。\hspace{66pt}\\
(2)Qの座標を(a,\ 0)とするとき、aの値を求めよ。\hspace{121pt}\\
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。\hspace{4pt}\\
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。\hspace{9pt}\\
x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2\hspace{100pt}\\
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域\hspace{18pt}\\
の面積S_2を求めよ。\hspace{230pt}\\
0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2
\end{eqnarray}
2022立教学部経済学部過去問
\begin{eqnarray}
{\large\boxed{3}}Oを原点とする座標平面上の放物線C:y=x^2とC上の点P(\frac{\sqrt3}{2}, \ \frac{3}{4})がある。\hspace{10pt}\\
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。\hspace{30pt}\\
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。\hspace{59pt}\\
(1)mの方程式をy=px+qとするとき、定数p,qの値を求めよ。\hspace{66pt}\\
(2)Qの座標を(a,\ 0)とするとき、aの値を求めよ。\hspace{121pt}\\
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。\hspace{4pt}\\
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。\hspace{9pt}\\
x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2\hspace{100pt}\\
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域\hspace{18pt}\\
の面積S_2を求めよ。\hspace{230pt}\\
0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2
\end{eqnarray}
2022立教学部経済学部過去問
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}Oを原点とする座標平面上の放物線C:y=x^2とC上の点P(\frac{\sqrt3}{2}, \ \frac{3}{4})がある。\hspace{10pt}\\
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。\hspace{30pt}\\
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。\hspace{59pt}\\
(1)mの方程式をy=px+qとするとき、定数p,qの値を求めよ。\hspace{66pt}\\
(2)Qの座標を(a,\ 0)とするとき、aの値を求めよ。\hspace{121pt}\\
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。\hspace{4pt}\\
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。\hspace{9pt}\\
x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2\hspace{100pt}\\
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域\hspace{18pt}\\
の面積S_2を求めよ。\hspace{230pt}\\
0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2
\end{eqnarray}
2022立教学部経済学部過去問
\begin{eqnarray}
{\large\boxed{3}}Oを原点とする座標平面上の放物線C:y=x^2とC上の点P(\frac{\sqrt3}{2}, \ \frac{3}{4})がある。\hspace{10pt}\\
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。\hspace{30pt}\\
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。\hspace{59pt}\\
(1)mの方程式をy=px+qとするとき、定数p,qの値を求めよ。\hspace{66pt}\\
(2)Qの座標を(a,\ 0)とするとき、aの値を求めよ。\hspace{121pt}\\
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。\hspace{4pt}\\
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。\hspace{9pt}\\
x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2\hspace{100pt}\\
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域\hspace{18pt}\\
の面積S_2を求めよ。\hspace{230pt}\\
0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2
\end{eqnarray}
2022立教学部経済学部過去問
投稿日:2022.09.25