【数Ⅱ】【微分法と積分法】微分の基本4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】微分の基本4 ※問題文は概要欄

問題文全文(内容文):
1辺の長さ$x$の正四面体がある。
(1)正四面体の表面積を$S$とするとき,$S$を$x$の関数で表せ。
(2)$x$が変化するとき,$S$の$x=5$における微分係数を求めよ。
チャプター:

0:00 オープニング
0:04 導入 問題の概要
0:25 (1)の解説
0:42 正三角形の面積の求め方
1:48 (2)の解説
2:16 エンディング

単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1辺の長さ$x$の正四面体がある。
(1)正四面体の表面積を$S$とするとき,$S$を$x$の関数で表せ。
(2)$x$が変化するとき,$S$の$x=5$における微分係数を求めよ。
投稿日:2025.02.19

<関連動画>

福田の数学〜大阪大学2025文系第3問〜放物線と接線が作る面積の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標平面において、$y=x^2-1$で表される放物線を

$C$とする。

$C$上の点$P$における$C$の接線を$\ell$とする。

ただし、点$P$は$y$軸上にはないものとする。

$O$を原点とし、放物線$C$と線分$OP$をよび

$y$軸で囲まれた図形の面積を$S$、

放物線$C$と接線$\ell$および$y$軸で囲まれた図形の

面積を$T$とする。

$S-T$の最大値を求めよ。

$2025$年大阪大学文系過去問題
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは正の実数である.
$x^{x+y}=y^{12},y^{x+y}=x^3$
これを解け.
この動画を見る 

【高校数学】 数Ⅱ-124 指数の拡張②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x^{n}=a$となる数$x$を、$a$の$n$乗根といい、2乗根、3乗根…をまとめて①____という。

◎次の値を求めよう。

②$^3\sqrt{ 8 }$

③$^3\sqrt{ 81 }$

④$\sqrt{ 25 }$

⑤$^4\sqrt{ 2 }$ $^4\sqrt{ 8 }$

⑥$\displaystyle \frac{^3\sqrt{ 54 }}{^3\sqrt{ 2 }}$

⑦$\sqrt{ ^3\sqrt{ 64 } }$

⑧$^8\sqrt{ 81 }$
この動画を見る 

17奈良県教員採用試験(数学:高校4番 微分・式変形)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣ $f(x)=x^3-3x^2+6$
異なる2点A(α,f(α)),B(β,f(β))上の接線は平行
(1)βをαで表せ
(2)直線ABをαを用いて表せ
(3)直線ABは定点を通ることを示せ
この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$実数解 $\dfrac{8^x+27^x}{12^x+18^x}=\dfrac{61}{36}$
これを求めよ.

この動画を見る 
PAGE TOP