#15 数検1級1次 過去問 3重積分 - 質問解決D.B.(データベース)

#15 数検1級1次 過去問 3重積分

問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.

$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.

$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
投稿日:2021.05.10

<関連動画>

大学入試問題#186 京都大学医学部(大正15年) 不定積分 たぶん難問

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{(x+1)\sqrt{ x^2-1 }}$を計算せよ。

出典:大正15年京都大学医学部 入試問題
この動画を見る 

大学入試問題#387「覚えておきたい計算方法」 #北里大学医学部2011 #定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} \displaystyle \frac{dx}{(x-1)^2(x+2)}$

出典:2011年北里大学医学部 入試問題
この動画を見る 

大学入試問題#207 埼玉大学(2006) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int -4\tan\ x\ log(\cos^2x)dx$を計算せよ。

出典:2006年埼玉大学 入試問題
この動画を見る 

大学入試問題#553「誘導なかったら、萎える」 東邦大学医学部(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
(1)
$\alpha=\displaystyle \frac{\pi}{4},\beta=\displaystyle \frac{3\pi}{4}$のとき
$\tan\displaystyle \frac{\alpha}{2}+\tan\displaystyle \frac{\beta}{2}$の値を求めよ

(2)
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^2-\sqrt{ 2 }x+1}$

出典:2013年東邦大学医学部 入試問題
この動画を見る 

大学入試問題#564「構想力が鍛えられる問題!」 東京帝国大学(1934) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3x+4}{\sqrt{ x^2+2x+5 }}\ dx$

出典:1934年東京帝国大学 入試問題
この動画を見る 
PAGE TOP