大学入試問題#100 東京大学(1954) 軌跡・領域 - 質問解決D.B.(データベース)

大学入試問題#100 東京大学(1954) 軌跡・領域

問題文全文(内容文):
点($x,y$)が原点を中心とする半径1の円の内部を動くとき
点($x+y,xy$)の動く範囲を図示せよ。

出典:1954年東京大学 入試問題
チャプター:

3:25~作成した解答のみを並べています。

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
点($x,y$)が原点を中心とする半径1の円の内部を動くとき
点($x+y,xy$)の動く範囲を図示せよ。

出典:1954年東京大学 入試問題
投稿日:2022.01.27

<関連動画>

【数学II】軌跡がイマイチ掴めない人が「見えた!」を実感するための動画【軌跡と領域】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】軌跡と領域について解説動画です
-----------------
①2点、A(1,0) B(6,0)からの距離の比が2:3である点Pの軌跡を求めよ。

②点Qが円$x^2+y^2=4$の同上を動くとき、A(8,0)と点Qとを結ぶ線分AQの中点Pの軌跡を求めよ。
この動画を見る 

【数学Ⅱ/三角関数】三角方程式①

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。

(1)
$\sin(\theta-\displaystyle \frac{\pi}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$


(2)
$\cos(\theta+\displaystyle \frac{\pi}{3})=\displaystyle \frac{1}{\sqrt{ 2 }}$
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$(x+1)(x^2+1)(x^4+1)(x^8+1)$で割った余りを求めよ.
この動画を見る 

【数Ⅱ】【複素数と方程式】高次方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を解け。
(1)4x³+3x-2=0
(2)2x³-7x²+2=0
(3)(x-1)(x-2)(x-3)=4・3・2
(4)(x²-2x)²-(x²-2x)-6=0
(5)x⁴+x²+1=0
(6)(x²-5x+1)(x²-5x+9)+15=0

1の3乗根のうち、虚数であるものの1つをωとする。次の式の値を求めよ。
(1)ω⁶+ω³+1
(2)ω⁸+ω⁴+1
(3)ω²⁰⁰+ω¹⁰⁰

4次方程式x⁴-3x³+ax²+bx-4=0が1と2を解にもつとき、定数a, bの値と他の解を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(11)証明問題への領域の利用、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $|a+b| \leqq 1$ かつ $|a-b| \leqq 1 \iff |a|+|b| \leqq 1$ を証明せよ。

${\Large\boxed{2}}$ $a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
-1 \leqq a+b-c \leqq 1 \cdots①\\
-1 \leqq a-b-c \leqq 1 \cdots②\\
-1 \leqq c \leqq 1     \cdots③\\
\end{array}
\right.
\end{eqnarray}$

このとき、$|a++2b| \leqq 4$ $\cdots$④ であることを証明せよ。
この動画を見る 
PAGE TOP