大学入試問題#100 東京大学(1954) 軌跡・領域 - 質問解決D.B.(データベース)

大学入試問題#100 東京大学(1954) 軌跡・領域

問題文全文(内容文):
点($x,y$)が原点を中心とする半径1の円の内部を動くとき
点($x+y,xy$)の動く範囲を図示せよ。

出典:1954年東京大学 入試問題
チャプター:

3:25~作成した解答のみを並べています。

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
点($x,y$)が原点を中心とする半径1の円の内部を動くとき
点($x+y,xy$)の動く範囲を図示せよ。

出典:1954年東京大学 入試問題
投稿日:2022.01.27

<関連動画>

ざ・見掛け倒し 何次方程式?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.

$f(x)=x^2+6x+6$
$f(f(f(f(f(x)))))=0$
この動画を見る 

0の0乗はいくつ?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$0^0=?$
$\displaystyle \lim_{x\to+0}x^x$
この動画を見る 

【数Ⅱ】領域内の点の最大値・最小値【具体例を作って方針を立てよう】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
不等式$x^2+y^2 \leqq 9$,$y \geqq \dfrac{1}{3}x-1$で表される領域をDとする.
領域D内の点$(x,y)$について,-$x+y$の最大値・最小値を求めよ.
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。

2022上智大学文系過去問
この動画を見る 

#数検準1級1次_2 #不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x}{e^x+e^{-x}} dx$

出典:数検準1級1次
この動画を見る 
PAGE TOP