茨城大 漸化式ぐらい自由に解かせてくれ - 質問解決D.B.(データベース)

茨城大 漸化式ぐらい自由に解かせてくれ

問題文全文(内容文):
2023茨城大学過去問題
一般項$a_{n}$を求めよ
$3a_{n}=S_{n}+n^2-2n+1$
$S_n=\displaystyle\sum_{k=1}^{n}a_{k}$
単元: #数列#学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023茨城大学過去問題
一般項$a_{n}$を求めよ
$3a_{n}=S_{n}+n^2-2n+1$
$S_n=\displaystyle\sum_{k=1}^{n}a_{k}$
投稿日:2023.09.27

<関連動画>

チャレンジ問題(複雑なパズル)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\dfrac{1}{1}=?,\ \dfrac{2\cdot 3}{1\cdot 3}=?,\ \dfrac{3\cdot 5\cdot 6}{1\cdot 3\cdot 5}=?$
$\dfrac{4 \cdot 7 \cdot 9 \cdot 10}{1 \cdot 3 \cdot 5 \cdot 7}=?,\ \dfrac{5 \cdot 9 \cdot 12 \cdot 14 \cdot 15}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 4}=?$

(1)各式の右辺を計算せよ.
(2)式の両辺がどのように続くか予想せよ.
(3)(2)の予想を示せ.
この動画を見る 

福田の数学〜中央大学2021年理工学部第2問〜3項間の漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$コインを繰り返し,連続した3回が順に,表→裏→表,あるいは,裏→表→裏,というパターンが出たときにコイン投げを終了する.$n\geqq 3$に対し,コインをちょうど$n$回投げて終了する確率を$p_n$とする.
以下の手順により$p_n$を求める.コインを$n$回投げて,「まだ終了していないが$n+1$回目に表が出たら終了する」または「まだ終了してないが$n+1$回目に裏が出たら終了する.」という状態にある確率を$r_n$とする.またコインを$n$回投げて「まだ終了しておらず,$n+1$回目に表が出ても裏が出ても終了しない」という状態にある確率を$s_n$とする.
このとき,$r_3=\dfrac{1}{4},s_3=\boxed{ク},r_4=\dfrac{1}{4},s_4=\boxed{ケ}$である.
ここで,$r_{n+4}$と$r_{n},s_n$を用いて表すと,それぞれ$r_{n+1}=\boxed{コ}$,$s_{n+1}=\boxed{サ}$となる.
この動画を見る 

【数B】【数列】漸化式8 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
表の出る確率が1/3である硬貨を投げて、
表が出たら点数を1点増やし、
裏が出たら点数はそのままとするゲームについて考える。
0点から始めて、硬貨を$n$回投げたときの点数が偶数である確率$P_n$を求めよ。
ただし、0は偶数と考える。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
数列$\left\{a_n\right\}$は、初項$a_1$が$0$であり、$n=1,2,3,\cdots$のとき次の漸化式を
満たすものとする。
$a_{n+1}=$$\displaystyle \frac{n+3}{n+1}\{3a_n+3^{n+1}-$$(n+1)(n+2)\}$ $\cdots$①

(1)$a_2=\boxed{\ \ ア\ \ }$ である。

(2)$b_n=\displaystyle \frac{a_n}{3^n(n+1)(n+2)}$とおき、数列$\left\{b_n\right\}$の一般項を求めよう。
$\left\{b_n\right\}$の初項$b_1$は$\boxed{\ \ イ\ \ }$である。①の両辺を$3^{n+1}(n+2)(n+3)$で
割ると
$b_{n+1}=b_n$$+\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\left(n+\boxed{\ \ エ\ \ }\right)\left(n+\boxed{\ \ オ\ \ }\right)}$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$

を得る。ただし、$\boxed{\ \ エ\ \ } \lt \boxed{\ \ オ\ \ }$とする。

したがって

$b_{n+1}-b_n=$$\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ オ\ \ }}\right)$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
である。

$n$を2以上の自然数とするとき

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ オ\ \ }}\right)$$=\displaystyle \frac{1}{\boxed{\ \ ク\ \ }}\left(\displaystyle \frac{n-\boxed{\ \ ケ\ \ }}{n+\boxed{\ \ コ\ \ }}\right)$

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{k+1}=$$\displaystyle \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}-\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が成り立つことを利用すると

$b_n=\displaystyle \frac{n-\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }\left(n+\boxed{\ \ チ\ \ }\right)}$$+\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が得られる。これは$n=1$のときも成り立つ。

(3)(2)により、$\left\{a_n\right\}$の一般項は
$a_n=\boxed{\ \ ツ\ \ }^{n-\boxed{テ}}\left(n^2-\boxed{\ \ ト\ \ }\right)+$$\displaystyle \frac{\left(n+\boxed{\ \ ナ\ \ }\right)\left(n+\boxed{\ \ ニ\ \ }\right)}{\boxed{\ \ ヌ\ \ }}$

で与えられる。ただし、$\boxed{\ \ ナ\ \ } \lt \boxed{\ \ ニ\ \ }$とする。
このことから、すべての自然数$n$について、
$a_n$は整数となることが分かる。

(4)$k$を自然数とする。$a_{3k},a_{3k+1},a_{3k+2}$で割った余りはそれぞれ
$\boxed{\ \ ネ\ \ },$ $\boxed{\ \ ノ\ \ },$ $\boxed{\ \ ハ\ \ }$である。また、$\left\{a_n\right\}$の初項から
第2020項までの和を$3$で割った余りは$\boxed{\ \ ヒ\ \ }$である。

2020センター試験過去問
この動画を見る 

等比数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$a+ar+ar^2=1$
$ar^3+ar^4+ar^5=8$
$ar^6+ar^7+ar^8=?$
この動画を見る 
PAGE TOP