お茶の水女子大 多項式の展開 - 質問解決D.B.(データベース)

お茶の水女子大 多項式の展開

問題文全文(内容文):
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ

出典:2000年お茶の水女子大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ

出典:2000年お茶の水女子大学 過去問
投稿日:2020.02.18

<関連動画>

COS36°を3通りで求めてね

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos36^{ \circ }$を3通りで求めよ
この動画を見る 

等式を変形せよ。

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a+b=0$
$a^2+b^2 = ▢ab$
この動画を見る 

【数Ⅰ】【図形と計量】正弦、余弦定理応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,

$\dfrac{\sin A}{13}=\dfrac{\sin B}{8}=\dfrac{\sin C}{7}$

が成り立つとき,次のものを求めよ。
(1) 最も大きい角の大きさ (2) 最も小さい角の正接

この動画を見る 

【高校数学】  数Ⅰ-91  正弦定理と余弦定理④

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。

①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
この動画を見る 

面積比の利用 灘高校

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$△HBF=△GDC=\frac{1}{2}△ABC$
$△ABC=120$
$△PDF=?$
*図は動画内参照
この動画を見る 
PAGE TOP