福田の数学〜東京科学大学(旧・東京工業大学)2025理系第4問〜フィボナッチ数列と無限級数の和 - 質問解決D.B.(データベース)

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第4問〜フィボナッチ数列と無限級数の和

問題文全文(内容文):
$\boxed{4}$

数列$\{a_n\}$を

$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$

により定め、数列$\{b_n\}$を

$\tan b_n=\dfrac{1}{a_n}$

により定める。

ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。

(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。

(2)$m\geqq 1$($m$は整数)に対して、

$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。

(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

数列$\{a_n\}$を

$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$

により定め、数列$\{b_n\}$を

$\tan b_n=\dfrac{1}{a_n}$

により定める。

ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。

(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。

(2)$m\geqq 1$($m$は整数)に対して、

$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。

(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
投稿日:2025.05.12

<関連動画>

福田の数学〜東北大学2025理系第2問〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

正の実数からなる$2$つの数列$\{x_n\},\{y_n\}$を

次のように定める。

$x_1=2,y_1=\dfrac{1}{2},x_{n+1}=(y_n)^5・(y_n)^2,$

$ \hspace{ 80pt } y_{n+1}=x_n・(y_n)^6$

このとき、以下の問いに答えよ。

(1)$k$を実数とする。

$a_n=\log_2 x_n,b_n=\log_2 y_n$とおく。

このとき、$\{a_n+kb_n\}$が等位数列になるような

$k$の値をすべて求めよ。

(2)数列$\{x_n\}$の一般項を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

千葉大 漸化式 良問再投稿

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$

以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2

出典:2013年千葉大学 過去問
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
この動画を見る 

【高校数学】 数B-86 群数列④

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数列$\dfrac{1}{1},\dfrac{1}{2},\dfrac{2}{1},\dfrac{1}{3},\dfrac{2}{2},\dfrac{3}{1},\dfrac{1}{4},\dfrac{2}{3},\dfrac{3}{2},\dfrac{4}{1},\dfrac{1}{5},\dfrac{2}{4},・・・$
について次の問いに答えよう.

①$\dfrac{5}{22}$は第何項か求めよう.

②この数列の第100項を求めよう.
この動画を見る 

【高校数学】 数B-79 数列の和と一般項②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項から第$n$項までの和$S_n$が
次の式で表される数列$\{a_n\}$の一般項を求めよう.

①$S_n=n^2+2n+2$

②$S_n=a_{n}+(n-1)^2$
この動画を見る 
PAGE TOP