Japanese Mathematics Olympiad 2001 - 質問解決D.B.(データベース)

Japanese Mathematics Olympiad 2001

問題文全文(内容文):
これらの方程式に適合する実数xを見つけてください
$x^5+2x^4-x^3-5x^2-10x+5=0$
$x^6+4x^5+3x^4-6x^3-20x^2-15x+5=0$
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これらの方程式に適合する実数xを見つけてください
$x^5+2x^4-x^3-5x^2-10x+5=0$
$x^6+4x^5+3x^4-6x^3-20x^2-15x+5=0$
投稿日:2019.01.25

<関連動画>

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ aとbを正の整数とし、f(x)=ax^2-bx+4\ とおく。2次方程式f(x)=0は\\
異なる2つの実数解をもつとする。\\
(\textrm{a})2次方程式f(x)=0の2つの解がともに整数であるとき\\
\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.  
または 
\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\
\\
である。\\
\\
(\textrm{b})b=7とする。2次方程式f(x)=0の2つの解のうち一方が整数であるとき、\\
a=\boxed{\ \ エ\ \ }であり、f(x)=0の2つの解は\\
\\
x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\\
\\
である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

連立2元9次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
この動画を見る 

3秒で答え出ます(剰余の定理)数II 割った余り

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$3x^2-2x+1$をx-1で割った余りは?
この動画を見る 

2021同志社大 4次方程式4つの虚数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.

2021同志社過去問
この動画を見る 

茨城大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{\sqrt{ 2 }}{2}+\displaystyle \frac{\sqrt{ 2 }}{2}i,\beta=-\displaystyle \frac{\sqrt{ 3 }}{2}+\displaystyle \frac{1}{2}i$
(1)
$\alpha^{n}=\beta^n=1$を満たす最小の自然数$n$


(2)
$n$自然数、$1 \leqq n \leqq 20$
$|\alpha^n+\beta^n|$の最小値とそのときの$n$の値は?

出典:2005年茨城大学 過去問
この動画を見る 
PAGE TOP