旭川医科大2023確率問題 - 質問解決D.B.(データベース)

旭川医科大2023確率問題

問題文全文(内容文):
コインを繰り返し投げて同じ面が3回続けて出たら終了するとき、
n,(n+1),(n+2) 回目に表が出て終了する確率を$P_n$とおくとき、

$\displaystyle \sum_{n=1}^\infty P_n$

を求めよ

旭川医大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
コインを繰り返し投げて同じ面が3回続けて出たら終了するとき、
n,(n+1),(n+2) 回目に表が出て終了する確率を$P_n$とおくとき、

$\displaystyle \sum_{n=1}^\infty P_n$

を求めよ

旭川医大過去問
投稿日:2023.08.31

<関連動画>

2023東大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
黒3,赤4,白5を一列に並べる.
(1)どの赤も隣り合わない確率を求めよ.
(2)どの赤も隣り合わないとき、どの黒も隣り合わない条件付き確率を求めよ.

2023東大過去問
この動画を見る 

福田の数学〜名古屋大学2024年理系第4問〜反復試行の確率と漸化式と定積分の計算

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 袋の中にいくつかの赤玉の白玉が入っている。すべての玉に対する赤玉の割合を$p$(0≦$p$≦1)とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。
試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$とおく。
(1)$n$≧2に対して、$f(1)$と$f(2)$を求めよ。
(2)$k$=1,2,...,$n$に対して、等式
$f(k)$=$\displaystyle\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3)自然数$k$に対して、定積分$I$=$\displaystyle\int_0^{\frac{1}{2}}x^k(1-x)^kdx$ を求めよ。
この動画を見る 

福田の数学〜くじ引きは神様が決めた順列〜明治大学2023年理工学部第1問(3)〜くじ引きの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (3)当たりくじ4本とはずれくじ6本からなる10本のくじがある。この中からAが2本のくじを同時に引き、その後Bが2本のくじを同時に引く。ただし、Aが引いたくじは元には戻さないものとする。
(a)Aの引いたくじが2本とも当たりである確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。
(b)AとBが引いたくじの中に1本も当たりがない確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。
(c)Aが引いたくじのうち1本だけが当たりで、かつBが引いたくじのうち1本だけが当たりである確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(d)Bの引いたくじが2本とも当たりである確率は$\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌネ\ \ }}$である。
この動画を見る 

数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正三角形の頂点を反時計回りに$A,B,C$と名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点を$A$とする。
4回の試行を続けた後、石が頂点$C$にある確率を求めよ。
この動画を見る 

【高校数学】集合の要素の個数~大切なのは公式ではなく理解~ 1-4【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
集合の要素の個数についての説明動画です
この動画を見る 
PAGE TOP