群数列 近江高校(改) - 質問解決D.B.(データベース)

群数列 近江高校(改)

問題文全文(内容文):
群数列
$\frac{1}{2} \quad \frac{2}{3} \quad \frac{1}{3} \quad \frac{3}{4} \quad \frac{2}{4} \quad \frac{1}{4} \quad \frac{4}{5} \quad \frac{3}{5} $
$① \quad ② \quad ③ \quad ④ \quad ⑤ \quad ⑥ \quad ⑦ \quad ⑧ $

近江高等学校(改)
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
群数列
$\frac{1}{2} \quad \frac{2}{3} \quad \frac{1}{3} \quad \frac{3}{4} \quad \frac{2}{4} \quad \frac{1}{4} \quad \frac{4}{5} \quad \frac{3}{5} $
$① \quad ② \quad ③ \quad ④ \quad ⑤ \quad ⑥ \quad ⑦ \quad ⑧ $

近江高等学校(改)
投稿日:2021.08.25

<関連動画>

福田のわかった数学〜高校3年生理系010〜極限(10)解けない漸化式の極限

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(10)
$a_1=2, a_{n+1}=\sqrt{a_n+30}$ のとき、
$\lim_{n \to \infty}a_n$ を調べよ。
この動画を見る 

0か1か

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
0 or 1
(1) $2^0=$
(2) $1!=$
(3) $0!=$
(4) ${}_nC_0=$
(5) $□ロ- (日米通算4367安打)$
この動画を見る 

三重大 逆 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}

(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ

(2)
$S_{n+1}$を$a_{n}$の1次式で表せ

出典:1996年三重大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(2)$a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)$で与えられる
数列$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ ア\ \ }$である。
また$\sum_{n=1}^la_n \geqq 20$
を満たす最小の自然数lは$\boxed{\ \ イ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

無限等比級数

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16} +\frac{1}{32} + \cdots =?$
この動画を見る 
PAGE TOP