福田の数学〜大阪大学2025理系第2問〜3次関数の極値と変曲点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2025理系第2問〜3次関数の極値と変曲点の軌跡

問題文全文(内容文):

$\boxed{2}$

$p$と$m$を実数とし、

関数$f(x)=x^3+3px^2+3mx$は

$x=\alpha$で極大値をとり、

$x=\beta$で極小値をとるとする。

(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。

(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を

満たしながら動くとき、

曲線$y=f(x)$の変曲点の軌跡を求めよ。

$2025$年大阪大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$p$と$m$を実数とし、

関数$f(x)=x^3+3px^2+3mx$は

$x=\alpha$で極大値をとり、

$x=\beta$で極小値をとるとする。

(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。

(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を

満たしながら動くとき、

曲線$y=f(x)$の変曲点の軌跡を求めよ。

$2025$年大阪大学理系過去問題
投稿日:2025.06.12

<関連動画>

【高校数学】 数Ⅱー49 高次方程式④

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3次方程式$x^3+ax^2+bx+10=0$の1つの解が$2-i$であるとき、実数a,bの値とほかの解を求めよう。
この動画を見る 

大学入試問題#120 早稲田大学(2003) 対数の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,\ a \neq 1$
$log\ a(x+2) \geqq log\ a^2(3x+16)$を解け

出典:2003年早稲田大学 入試問題
この動画を見る 

福田の数学〜zを正負で場合分けできないときどうする〜明治大学2023年全学部統一Ⅲ第1問(2)〜複素数に関する2次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)複素数$z$の方程式
$z^2$-3|$z$|+2=0
を考える。この方程式は$\boxed{\ \ イ\ \ }$個の解を持ち、このうち実数でないかの個数は$\boxed{\ \ ウ\ \ }$個である。
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(1)〜指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)方程式$2^{x+2}$-$2^{2x+1}$+16=0 を解くと$x$=$\boxed{\ \ ア\ \ }$である。

2023立教大学理学部過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 
PAGE TOP