福田の数学〜北海道大学2025理系第2問〜円に引いた2本の接線でできる四角形の面積の最大最小 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2025理系第2問〜円に引いた2本の接線でできる四角形の面積の最大最小

問題文全文(内容文):
$\boxed{2}$

円$C_1:x^2+y^2=1$を考える。

実数$p,q$が$p^2+q^2 \gt 1$を満たすとき、

点$p(p,q)$から$C_1$に引いた$2$本の接線$\ell_1,\ell_2$の

接点をそれぞれ$Q_1(x_1,y_1), Q_2(x_2,y_2)$とする。

また、座標平面上の原点を$O(0,0)$とする。

(1)直線$\ell_1,\ell_2$,線分$OQ_1,OQ_2$で囲まれた

四角形の面積$S$を$p,q$を用いて表せ。

(2)点$P$が楕円

$C_2:\dfrac{x^2}{2}+\dfrac{y^2}{3}=1$

の上を動くとき、

(1)の四角形の面積$S$の最大値と最小値を求めよ。

$2025$年北海道大学理系過去問題
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

円$C_1:x^2+y^2=1$を考える。

実数$p,q$が$p^2+q^2 \gt 1$を満たすとき、

点$p(p,q)$から$C_1$に引いた$2$本の接線$\ell_1,\ell_2$の

接点をそれぞれ$Q_1(x_1,y_1), Q_2(x_2,y_2)$とする。

また、座標平面上の原点を$O(0,0)$とする。

(1)直線$\ell_1,\ell_2$,線分$OQ_1,OQ_2$で囲まれた

四角形の面積$S$を$p,q$を用いて表せ。

(2)点$P$が楕円

$C_2:\dfrac{x^2}{2}+\dfrac{y^2}{3}=1$

の上を動くとき、

(1)の四角形の面積$S$の最大値と最小値を求めよ。

$2025$年北海道大学理系過去問題
投稿日:2025.03.22

<関連動画>

決め手は角度。大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△CDQ=?
*図は動画内参照

大阪桐蔭高等学校
この動画を見る 

気付けば一瞬!!

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x = ?$
*図は動画内参照
この動画を見る 

不定方程式の解き方

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
不定方程式の解の求め方説明動画です
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.

(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.

宮崎大過去問
この動画を見る 

確率の基本問題

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
この動画を見る 
PAGE TOP