福田のおもしろ数学218〜不動点と合成関数の作る方程式の解 - 質問解決D.B.(データベース)

福田のおもしろ数学218〜不動点と合成関数の作る方程式の解

問題文全文(内容文):
$f(x)=x^2+1$のとき、方程式$f(f(x))=x$を満たす$x$をすべて求めよ。
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=x^2+1$のとき、方程式$f(f(x))=x$を満たす$x$をすべて求めよ。
投稿日:2024.08.07

<関連動画>

福田のおもしろ数学548〜無理関数の不定積分

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

不定積分$I=\displaystyle \int \sqrt{x^2-1}dx \ (x\gt 1)$を

$x=\dfrac{1}{\cos\theta}$と

置き換えて求めて下さい。
    
この動画を見る 

福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\log(x+1)+1$とする。以下の問いに答えよ。
(1)方程式$f(x)=x$は、$x \gt 0$の範囲でただ1つの解を
もつことを示せ。
(2)(1)の解を$\alpha$とする。実数$x$が$0 \lt x \lt \alpha$を満たすならば、
次の不等式が成り立つことを示せ。
$0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)$
(3)数列$\left\{x_n\right\}$を
$x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)$
で定める。このとき、全ての自然数nに対して
$\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)$
が成り立つことを示せ。
(4)(3)の数列$\left\{x_n\right\}$について、$\lim_{n \to \infty}x_n=\alpha$を示せ。

2022大阪大学理系過去問
この動画を見る 

【高校数学あるある】無限等比数列の収束条件 (再) #Shorts

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
無限等比例数{${\left( -\frac{8x}{x^2+7} \right)^n}$}が収束する$x$の範囲を求めよ。
この動画を見る 

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を$a_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)$によって定める。
以下の問いに答えよ。
(1)全ての自然数$n$について$a_{n+1}=\frac{2}{\sqrt{a_n}}$が成り立つことを示せ。
(2)数列$\left\{b_n\right\}$を$b_n=\log a_n (n=1,2,3,\ldots)$によって定める。
$b_n$の値を$n$を用いて表せ。
(3)極限値$\lim_{n \to \infty}a_n$を求めよ。

2022神戸大学理系過去問
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin\left(\dfrac{\sin x}{\pi}\right)}{x}$
この動画を見る 
PAGE TOP