東大 レピュニット数 - 質問解決D.B.(データベース)

東大 レピュニット数

問題文全文(内容文):
$\overbrace{ 1111 + \cdots +11}^{3^n桁}$は$3^n$で割り切れるが
$3^{n+1}$では割り切れないことを示せ.

東大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{ 1111 + \cdots +11}^{3^n桁}$は$3^n$で割り切れるが
$3^{n+1}$では割り切れないことを示せ.

東大過去問
投稿日:2023.02.03

<関連動画>

横浜市立(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.

横浜市立(医)過去問
この動画を見る 

群数列 近江高校(改)

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
群数列
$\frac{1}{2} \quad \frac{2}{3} \quad \frac{1}{3} \quad \frac{3}{4} \quad \frac{2}{4} \quad \frac{1}{4} \quad \frac{4}{5} \quad \frac{3}{5} $
$① \quad ② \quad ③ \quad ④ \quad ⑤ \quad ⑥ \quad ⑦ \quad ⑧ $

近江高等学校(改)
この動画を見る 

鹿児島大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$ 一般項を求めよ
$a_{n+1}=2a_n+3n^2+3n$

出典:2019年鹿児島大学 過去問
この動画を見る 

2023昭和大(医)漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=4$
$\displaystyle \sum_{k=1}^{n+1} a_k=4,a_n+8$
一般項$a_n$を求めよ.

昭和大(医)過去問
この動画を見る 

数学「大学入試良問集」【13−14 確率漸化式の基本】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
袋の中に$1~9$までの異なる数字を1つずつ書いた9枚のカードが入っている。
この中から1枚を取り出し、数字を調べて袋に戻す。
この試行を$n$回繰り返したとき、調べた$n$枚のカードの数字の和が偶数になる確率を$P_n$とする。
このとき、次の各問いに答えよ。
(1)$P_2,P_3$の値を求めよ。
(2)$P_{n+1}$を$P_n$を用いて表せ。
(3)$P_n$を$n$を用いて表せ。
この動画を見る 
PAGE TOP