問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(4)\hspace{120pt}\\
微分可能な関数f(x)がf(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}を満たしている。\\
a_{n+1}=f(a_n)で定義される数列\left\{a_n\right\}について、\lim_{n \to \infty}a_n=1であることを示せ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 平均値の定理(4)\hspace{120pt}\\
微分可能な関数f(x)がf(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}を満たしている。\\
a_{n+1}=f(a_n)で定義される数列\left\{a_n\right\}について、\lim_{n \to \infty}a_n=1であることを示せ。
\end{eqnarray}
単元:
#数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(4)\hspace{120pt}\\
微分可能な関数f(x)がf(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}を満たしている。\\
a_{n+1}=f(a_n)で定義される数列\left\{a_n\right\}について、\lim_{n \to \infty}a_n=1であることを示せ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 平均値の定理(4)\hspace{120pt}\\
微分可能な関数f(x)がf(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}を満たしている。\\
a_{n+1}=f(a_n)で定義される数列\left\{a_n\right\}について、\lim_{n \to \infty}a_n=1であることを示せ。
\end{eqnarray}
投稿日:2021.09.20