【数Ⅲ】【微分】 f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0 のとき次を示せ。 (1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1 - 質問解決D.B.(データベース)

【数Ⅲ】【微分】 f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0 のとき次を示せ。 (1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1

問題文全文(内容文):
微分可能な関数f(x)とすべての実数x,yについて次の等式が成り立っている。
f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0
このとき、次のことが成り立つことを示せ。
(1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1
チャプター:

00:00 スタート(1)解説
01:26 (2)解説
03:03 (3)解説

単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
微分可能な関数f(x)とすべての実数x,yについて次の等式が成り立っている。
f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0
このとき、次のことが成り立つことを示せ。
(1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1
投稿日:2025.12.18

<関連動画>

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。

山形大過去問
この動画を見る 

【数Ⅲ-126】微分の不等式への応用②

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用➁)

$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
この動画を見る 

【高校数学】数Ⅲ-116 関数の極値①

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値①)
Q.次の関数の極値を求めよ

①$f(x)=\frac{x^2+2x+1}{x^2+1}$

➁$f(x)=x^2e^{-x}$

③$f(x)=\frac{\log x}{x^2}$
この動画を見る 

【高校数学】数Ⅲ-100 対数微分法

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を対数微分法を用いて微分せよ。

①$y=\dfrac{x^2(x-1)}{x-2}$

②$y=\sqrt[3]{x^2(x+1)}$
この動画を見る 

信州大 三次方程式の解の極限値

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#信州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3+3nx^2-3(n+1)=0(n$自然数$)$

(1)
$n$の値に関わらず正の解をただ一つだけもつことを示せ

(2)
正の解を$\alpha_n$とする。
$\displaystyle \lim_{ n \to \infty }\alpha_n$を求めよ

出典:1998年信州大学 過去問
この動画を見る 
PAGE TOP