問題文全文(内容文):
円周を12等分するように点$A_1,A_2,A_3,\ldots,A_{12}$が時計回りに並んでいる。
また、白球2個と黒球4個が入った袋がある。点Pを、次の操作によって
12個の点上を移動させる。
操作:袋から球を一つ取り出した後にサイコロを投げる。白球ならば時計回りに、
黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。
取り出した球は袋に戻さないこととする。
Pを最初に点 $A_1$に置く。操作を1回行い、Pが$A_1$から移動した点をQとおく。
続けて操作を1回行い、PがQから移動した点をRとおく。
もう一度操作を行い、 PがRから移動した点をSとおく。
(1) $R=A_1$となる確率を求めよ。
(2)3点Q, R, Sを結んでできる図形が正三角形となる確率を求めよ。
2022千葉大学理系過去問
円周を12等分するように点$A_1,A_2,A_3,\ldots,A_{12}$が時計回りに並んでいる。
また、白球2個と黒球4個が入った袋がある。点Pを、次の操作によって
12個の点上を移動させる。
操作:袋から球を一つ取り出した後にサイコロを投げる。白球ならば時計回りに、
黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。
取り出した球は袋に戻さないこととする。
Pを最初に点 $A_1$に置く。操作を1回行い、Pが$A_1$から移動した点をQとおく。
続けて操作を1回行い、PがQから移動した点をRとおく。
もう一度操作を行い、 PがRから移動した点をSとおく。
(1) $R=A_1$となる確率を求めよ。
(2)3点Q, R, Sを結んでできる図形が正三角形となる確率を求めよ。
2022千葉大学理系過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
円周を12等分するように点$A_1,A_2,A_3,\ldots,A_{12}$が時計回りに並んでいる。
また、白球2個と黒球4個が入った袋がある。点Pを、次の操作によって
12個の点上を移動させる。
操作:袋から球を一つ取り出した後にサイコロを投げる。白球ならば時計回りに、
黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。
取り出した球は袋に戻さないこととする。
Pを最初に点 $A_1$に置く。操作を1回行い、Pが$A_1$から移動した点をQとおく。
続けて操作を1回行い、PがQから移動した点をRとおく。
もう一度操作を行い、 PがRから移動した点をSとおく。
(1) $R=A_1$となる確率を求めよ。
(2)3点Q, R, Sを結んでできる図形が正三角形となる確率を求めよ。
2022千葉大学理系過去問
円周を12等分するように点$A_1,A_2,A_3,\ldots,A_{12}$が時計回りに並んでいる。
また、白球2個と黒球4個が入った袋がある。点Pを、次の操作によって
12個の点上を移動させる。
操作:袋から球を一つ取り出した後にサイコロを投げる。白球ならば時計回りに、
黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。
取り出した球は袋に戻さないこととする。
Pを最初に点 $A_1$に置く。操作を1回行い、Pが$A_1$から移動した点をQとおく。
続けて操作を1回行い、PがQから移動した点をRとおく。
もう一度操作を行い、 PがRから移動した点をSとおく。
(1) $R=A_1$となる確率を求めよ。
(2)3点Q, R, Sを結んでできる図形が正三角形となる確率を求めよ。
2022千葉大学理系過去問
投稿日:2022.05.12