滋賀大 3次関数に相違3接線が引ける条件 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

滋賀大 3次関数に相違3接線が引ける条件 Mathematics Japanese university entrance exam

問題文全文(内容文):
滋賀大学過去問題
$C:f(x)=\frac{1}{3}x^3-x^2$ A(a,0)
(1)AからCに異なる3本の接線が引けるaの範囲
(2)Aから異なる3本の接線が引けるとき、3本のうち2本が垂直に交わるaの値
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
滋賀大学過去問題
$C:f(x)=\frac{1}{3}x^3-x^2$ A(a,0)
(1)AからCに異なる3本の接線が引けるaの範囲
(2)Aから異なる3本の接線が引けるとき、3本のうち2本が垂直に交わるaの値
投稿日:2018.10.09

<関連動画>

福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 福田次郎
問題文全文(内容文):
(1)三角関数について、次の等式が成り立つ。
$\cos2θ=\boxed{アイ}\sin^2θ+\boxed{ウ}$
$\sin3θ=\boxed{エオ}\sin^3θ+\boxed{カ}\sinθ$
(2)$0 \leqq θ \lt 2\pi$のとき、関数
$y=-\frac{1}{12}\sin3θ+\frac{3}{8}\cos2θ-\frac{3}{4}\sinθ$
は$θ=\frac{\boxed{キ}}{\boxed{ク}}\pi$で最小値$\frac{\boxed{ケコサ}}{\boxed{シス}}$をとり、
$\sinθ=\frac{\boxed{セソ}}{\boxed{タ}}$のとき最大値$\frac{\boxed{チツ}}{\boxed{テト}}$
をとる。また、yの極致を与えるθの個数は$\boxed{ナ}$である。

2022杏林大学医学部過去問
この動画を見る 

#愛媛大学2014#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(\sqrt{ x^2+x+4 }-\sqrt{ x^2+4 })\sin2x}{x^2}$

出典:2024年愛媛大学
この動画を見る 

整式の剰余 落とし穴注意!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}$を$(x^4-x^2+1)^2$
で割ったあまり
この動画を見る 

【数Ⅱ】【微分法と積分法】偶関数と奇関数の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
(1)$\int_{-1}^1(4x³+3x²+3x+1)dx$
(2)$\int_{-2}^2(x³-x²-x+4)dx$
(3)$\int_{-2}^2(x⁴-5x³+x²+9x)dx $
この動画を見る 

【数Ⅱ】三角関数のグラフ③ 横の変化(y=sin(θ-π/2)、y=sin2θのグラフ)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y=sin(θ-π/2)、y=sin2θ$のグラフを解説していきます.
この動画を見る 
PAGE TOP