整数問題 昭和学院秀英 - 質問解決D.B.(データベース)

整数問題 昭和学院秀英

問題文全文(内容文):
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
投稿日:2024.01.23

<関連動画>

2020整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{2020}$を$66$で割った余りを求めよ
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(5)〜約数の個数が6個の自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)自然数nは1とn以外にちょうど4個の約数をもつとする。このような
自然数nの中で、最小の数は$\boxed{\ \ ク\ \ }$であり、最小の奇数は$\boxed{\ \ ケ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

兵庫県立大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$48n+3=m^2$を満たす整数$(m,n)$は存在しないことを示せ.

2021兵庫県立大過去問
この動画を見る 

反省して数字を変えてみた

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{2024}$÷1000
あまりを求めよ

$2^{2024}$÷196
あまりを求めよ
この動画を見る 

帝京大(医)漸化式 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り

出典:2005年帝京大学医学部 過去問
この動画を見る 
PAGE TOP