福田のおもしろ数学539〜部分和がすべて正になるような数列を作れるか - 質問解決D.B.(データベース)

福田のおもしろ数学539〜部分和がすべて正になるような数列を作れるか

問題文全文(内容文):

総和が$1$である$2025$個の整数が円形に

並んでいる。

ある整数から出発して反時計回りでこれらの

整数を一列に並べ$a_1,a_2,a_3,\cdots, a_{2025}$とする。

これらの部分和$S_n=\displaystyle \sum_{k=1}^{n} a_k \quad (n=1,2,\cdots ,2025)$

がすべて正となるようにできるか?
     
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

総和が$1$である$2025$個の整数が円形に

並んでいる。

ある整数から出発して反時計回りでこれらの

整数を一列に並べ$a_1,a_2,a_3,\cdots, a_{2025}$とする。

これらの部分和$S_n=\displaystyle \sum_{k=1}^{n} a_k \quad (n=1,2,\cdots ,2025)$

がすべて正となるようにできるか?
     
投稿日:2025.06.24

<関連動画>

数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(3)〜漸化式で与えられた数列の項の値

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)$a$を実数とする。
数列$\left\{a_n\right\}$が次の条件を満たしている。
$(\textrm{i})a_1=a$
$(\textrm{ii})a_{n+1}=a_n^2-2a_n-3(n=1,2,3,\ldots)$
このとき、すべての正の整数$n$に対して、$a_n \leqq 10$となるような
$a$の最小値は$\boxed{\ \ ウ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

数学「大学入試良問集」【13−9 数学的帰納法(累積帰納法)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$a_0,a_1,a_2,・・・a_n・・・$を次のように定義する。
$a_0=\displaystyle \frac{1}{2},a_{n+1}\displaystyle \sum_{k=0}^n a_k a_{n-k}n=0,1,2,・・・)$
以下の問いに答えよ。
(1)$a_1,a_2,a_3$を求めよ。
(2)一般項$a_n$を求めよ。
(3)$b_n=\displaystyle \sum_{k=0}^n\displaystyle \frac{n!}{k!(n-k)!}a_ka_{n-k}(n=0,1,2,・・・)$を求めよ。
この動画を見る 

福田の数学〜誘導付き3項間の漸化式を解く〜明治大学2023年全学部統一ⅠⅡAB第1問(1)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{n+2}=4(a_{n+1}-a_n)$$(n=1,2,3,...)$
$a_1=2,a_2=16$
(1)$b_n=a_{n+1}-2a_n$$(n=1,2,3,...)$と置いて$b_n$を求めよ。
(2)$a_n$を求めよ。

2023明治大学全統過去問
この動画を見る 

【爆笑】足し算が難しすぎて頭爆発しました

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
難しい足し算の紹介解説動画です
この動画を見る 
PAGE TOP