福田のおもしろ数学539〜部分和がすべて正になるような数列を作れるか - 質問解決D.B.(データベース)

福田のおもしろ数学539〜部分和がすべて正になるような数列を作れるか

問題文全文(内容文):

総和が$1$である$2025$個の整数が円形に

並んでいる。

ある整数から出発して反時計回りでこれらの

整数を一列に並べ$a_1,a_2,a_3,\cdots, a_{2025}$とする。

これらの部分和$S_n=\displaystyle \sum_{k=1}^{n} a_k \quad (n=1,2,\cdots ,2025)$

がすべて正となるようにできるか?
     
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

総和が$1$である$2025$個の整数が円形に

並んでいる。

ある整数から出発して反時計回りでこれらの

整数を一列に並べ$a_1,a_2,a_3,\cdots, a_{2025}$とする。

これらの部分和$S_n=\displaystyle \sum_{k=1}^{n} a_k \quad (n=1,2,\cdots ,2025)$

がすべて正となるようにできるか?
     
投稿日:2025.06.24

<関連動画>

【数学B/数列】階差数列(階差数列を利用して数列の一般項を求める)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数列の一般項を求めよ。
(1)
$2,3,6,11,18,…$

(2)
$2,3,5,9,17,…$
この動画を見る 

中学生でも解ける京大の入試問題!解けますか?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1歩で1段または2段のいずれかで階段を昇るとき、1歩で2段昇ることは連続しないものとする。15段の階段を昇る昇り方は何通りあるか。

京都大過去問
この動画を見る 

14和歌山県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=5,a_{n+1}=\dfrac{5a_n+6}{a_4+4}$とする.

(1)$b_n=\dfrac{a_n+\beta}{a_n+\alpha}\ (\alpha \gt \beta)$
$b_n$が等比数列となるような$\alpha,\beta$の値を求めよ.

(2)$a_n$を求めよ.
この動画を見る 

福田の数学〜京都大学2023年文系第4問〜部分和を含んだ漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 数列{$a_n$}は次の条件を満たしている。
$a_1$=3, $a_n$=$\frac{S_n}{n}$+$(n-1)・2^n$ (n=2,3,4,...)
ただし、$S_n$=$a_1$+$a_2$+...+$a_n$である。このとき、数列{$a_n$}の一般項を求めよ。

2023京都大学文系過去問
この動画を見る 

【数B】【数列】漸化式2 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
(1)$a_1 = 10$, $a_{n+1} = 2a_n + 2^{n+2}$
(2)$a_1 = 3$, $a_{n+1} = 6a_n + 3^{n+1}$
この動画を見る 
PAGE TOP