福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2)

問題文全文(内容文):
数学$\textrm{III}$ 変化率(3) 水の問題(2)
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から$2cm^3$秒
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する
速度と水面の面積が減少する速度を求めよ。
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(3) 水の問題(2)
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から$2cm^3$秒
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する
速度と水面の面積が減少する速度を求めよ。
投稿日:2021.12.25

<関連動画>

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$接線(2) 媒介変数表示の接線
$\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.$
で表される曲線の$\theta=\frac{3\pi}{2}$のときの点Pにおける接線を求めよ。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a,\ h$を正の実数とする。座標平面において、原点Oからの距離が
直線$x=h$からの距離の$a$倍であるような点$P$の軌跡を考える。点$P$の座標を$(x,\ y)$とする
と、$x,\ y$は次の方程式を満たす。
$(1-\boxed{ア})\ x^2+2\ \boxed{イ}\ x+y^2=\boxed{ウ}...(1)$

$\boxed{ア},\ \boxed{イ},\ \boxed{ウ}$の解答群
$⓪a^2 ①h^2 ②a^3 ③a^2h ④ah^2$
$⑤h^3 ⑥b^4 ⑦a^2h^2 ⑧ah^3 ⑨h^4$

次に、座標平面の原点$O$を極、$x$軸の正の部分を始線とする極座標を考える。
点$P$の極座標を$(r\ \theta)$とする。$r \leqq h$を満たすとき、
点$P$の直交座標$(x,\ y)$を$a,\ h,\ θ$を用いて表すと

$(x,\ y)=(\frac{\boxed{エ}}{\boxed{オ}}\ \cos θ,\ \frac{\boxed{エ}}{\boxed{オ}}\ \sin θ)...(2) $
$\boxed{エ},\ \boxed{オ}$の解答群
$⓪h①ah②h^2③ah^2④1+a\cos θ$
$⑤1+a\sin θ ⑥a\cos θ-1⑦a\sin θ-1⑧1-a\cos θ ⑨1-a\sin θ$

(1)から、$a=\boxed{カ}$のとき、点$P$の軌跡は放物線$x=\boxed{キ}\ y^2+\boxed{ク}$となる。
この放物線とy軸で囲まれた図形の面積$S$は
$S=2\int_0^{\boxed{ケ}}xdy=2\int_0^{\boxed{ケ}}(\boxed{キ}\ y^2+\boxed{ク})dy=$
$\frac{\boxed{コ}}{\boxed{サ}}\ h^2$
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。
$\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{シ}}{\boxed{ス}}$

$\boxed{キ},\ \boxed{ク},\ \boxed{ケ}$の解答群
$⓪h ①2h ②\frac{h}{2} ③-\frac{h}{2} ④\frac{1}{h}$
$⑤-\frac{1}{h} ⑥\frac{1}{2h} ⑦-\frac{1}{2h} ⑧h^2 ⑨-h^2$

2022明治大学全統理系過去問
この動画を見る 

高専数学 微積II #19(2) 3次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sin 2x$の$x=0$における
3次近似式を求めよ.
この動画を見る 

数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
この動画を見る 

【数Ⅲ】東大の基礎問題!絶対に落としてはいけない!【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
$f(x)=\dfrac{x}{sin x}+cos x$  ($ 0<x<\pi $)
の増減表を作り,$ x→+0,x→\pi-0$のときの極限を調べよ。

東大過去問
この動画を見る 
PAGE TOP