福田の1.5倍速演習〜合格する重要問題067〜九州大学2017年度文系第4問〜最大公約数 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題067〜九州大学2017年度文系第4問〜最大公約数

問題文全文(内容文):
$\Large{\boxed{4}}$ 以下の問いに答えよ。
(1) 2017と225の最大公約数を求めよ。
(2) 225との最大公約数が15となる2017以下の自然数の個数を求めよ。
(3) 225との最大公約数が15であり、かつ1998との最大公約数が111となる2017以下の自然数を全て求めよ。

2017九州大学文系過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 以下の問いに答えよ。
(1) 2017と225の最大公約数を求めよ。
(2) 225との最大公約数が15となる2017以下の自然数の個数を求めよ。
(3) 225との最大公約数が15であり、かつ1998との最大公約数が111となる2017以下の自然数を全て求めよ。

2017九州大学文系過去問
投稿日:2023.01.21

<関連動画>

名古屋大 分野不明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{n}$は整数でなく,小数第一位が$0$で$2$倍は$0$でない.
$\sqrt{n}=\boxed{A}.0\boxed{b}・・・$

(1)最小の$n$を求めよ.
(2)小さい順で$10$番目の$n$を求めよ.

2019名古屋大過去問
この動画を見る 

【良問】整数問題の重要なポイントが詰まりまくった問題【数学 大学入試】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)整数$m$に対して、$m^2$を4で割った余りは0または1であることを示せ。
(2)自然数$n,k$が$25×3^n=k^2+176$・・・・・・(①)を満たすとき、$n$は偶数であることを示せ。
(3)(2)の関係式(①)を満たす自然数の組($n,k$)をすべて求めよ。

数学入試問題過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$8k+7=a^2+b^2+c^2$

(2)
$4^p(8k+7)=a^2+b^2+c^2$

上の式を満たす整数$a,b,c,k,p$は存在しないことを示せ
この動画を見る 

もっちゃんと学ぶ「合同式」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
合同式の解説動画です
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。

2021上智大学文系過去問
この動画を見る 
PAGE TOP