【高校数学】等差数列の和の公式~理解したら簡単です~ 3-4【数学B】 - 質問解決D.B.(データベース)

【高校数学】等差数列の和の公式~理解したら簡単です~ 3-4【数学B】

問題文全文(内容文):
等差数列の和の公式 解説動画です
チャプター:

00:00 はじまり

00:43 1つ目の具体例

03:18 2つめの具体例

04:58 公式を導くぜ

10:15 まとめ

11:26 まとめノート

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差数列の和の公式 解説動画です
投稿日:2021.07.25

<関連動画>

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 

田の数学〜早稲田大学2021年人間科学部第3問〜格子点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
自然数$n$について、連立不等式
$\left\{\begin{array}{1}
x \geqq 0\\
\displaystyle\frac{1}{4}x+\frac{1}{5}|y| \leqq n\\
\end{array}\right.$
を満たす整数の組$(x, y)$の個数は、$n=1$のときは$\boxed{\ \ シ\ \ }$であり、$n$の式で表すと$\boxed{\ \ ス\ \ }n^2+\boxed{\ \ セ\ \ }n+\boxed{\ \ ソ\ \ }$となる。

2021早稲田大学人間科学部過去問
この動画を見る 

20年5月数学検定準1級1次試験(数列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$

20年5月数学検定準1級1次試験(数列)過去問
この動画を見る 

奈良女子大 数列の積

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P_n=a_1a_2a_3…a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^\infty a_m$を求めよ

出典:奈良女子大学 過去問
この動画を見る 

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$  $a_{n+1}=3a_n-2$
この動画を見る 
PAGE TOP