中学生の知識でオイラーの公式を理解しよう VOL 5 対数 logの微分 - 質問解決D.B.(データベース)

中学生の知識でオイラーの公式を理解しよう VOL 5 対数 logの微分

問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 5 対数 logの微分
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 5 対数 logの微分
投稿日:2017.07.08

<関連動画>

福田の数学〜立教大学2022年理学部第1問(1)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)$実数$x$に関する方程式
$2\log(1-x)-\log(5-x)=\log 2$
を解くと$x=\boxed{ア}$である.

立教大学2022年理学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。

(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。

(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
この動画を見る 

福田の数学〜立教大学2022年理学部第2問〜接線と囲まれた部分の面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数xに対し、関数f(x)を
$f(x)=xe^{-x}$
により定める。座標平面上の曲線$C:y=f(x)$に関して、次の問(1)~(5)に答えよ。
(1)f(x)の導関数$f'(x)$を求め、$f(x)$の増減表を書け。ただし、極値も記入すること。
(2)f(x)の第2次導関数$f''(x)$を求め、Cの変曲点の座標を求めよ。
(3)Cの変曲点と、座標平面上の原点を通る直線を$l$とする。
Cとlで囲まれた領域の面積Sを求めよ。
(4)$a,\ b,\ c$を定数とし、関数$g(x)$を$g(x)=(ax^2+bx+c)e^{-2x}$と定める。
$g(x)$の導関数$g'(x)$が$g'(x)=x^2e^{-2x}$を満たすとき、$a,\ b,\ c$の値を求めよ。
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる
回転体の体積Vを求めよ。

2022立教大学理学部過去問
この動画を見る 

大学院入試問題#1「間違えてたらすみません」 岡山大学大学院 #微分方程式

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$\displaystyle \frac{dy}{dx}=\displaystyle \frac{4y}{3x},\ x \gt 0$の一般項を求めよ

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{dy}{dx}=\displaystyle \frac{2y}{3x}+\displaystyle \frac{2x}{y},\ x \gt 0 \\
y(1)=3
\end{array}
\right.
\end{eqnarray}$を満たす解を求めよ

出典:岡山大学大学院 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題006〜名古屋大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=x^{-2}2^x(x≠0)$について、$f'(x) \gt 0$となるための
xに関する条件を求めよ。
(2)方程式$2^x=x^2$は相異なる3個の実数解をもつことを示せ。
(3)方程式$2^x=x^2$の解で有理数であるものを全て求めよ。

2015名古屋大学理系過去問
この動画を見る 
PAGE TOP