福田の数学〜東京慈恵会医科大学2024医学部第2問〜定積分で表された関数の最小値 - 質問解決D.B.(データベース)

福田の数学〜東京慈恵会医科大学2024医学部第2問〜定積分で表された関数の最小値

問題文全文(内容文):
$\boxed{ 2 }1\lt a \lt 2$を満たす実数$a$について、$S(a)=\int_1^2 {|log(1+x)-logax|} dx$とするとき、次の問いに答えよ。ただし、logは自然対数である。
(1)$a$の値に応じて、$1\leqq x \leqq 2$の範囲で方程式$log(1+x)-logax=0$の解の個数を調べよ。
(2)$S(a)$を求めよ。
(3)$S(a)(1 \lt a \lt 2)$の最小値と、そのときの$a$の値を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{ 2 }1\lt a \lt 2$を満たす実数$a$について、$S(a)=\int_1^2 {|log(1+x)-logax|} dx$とするとき、次の問いに答えよ。ただし、logは自然対数である。
(1)$a$の値に応じて、$1\leqq x \leqq 2$の範囲で方程式$log(1+x)-logax=0$の解の個数を調べよ。
(2)$S(a)$を求めよ。
(3)$S(a)(1 \lt a \lt 2)$の最小値と、そのときの$a$の値を求めよ。
投稿日:2024.10.10

<関連動画>

大学入試問題#601「これは落としたくないかも」 広島大学後期(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=x\ log\ x$のとき
$(\displaystyle \frac{1}{e} \leqq x \leqq )$
$\displaystyle \int_{0}^{e} f^{-1}(x) dx$を求めよ

出典:2014年広島大学後期 入試問題
この動画を見る 

大学入試問題#319 電気通信大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty }\displaystyle \int_{0}^{a}\displaystyle \frac{1}{1+e^x}dx$

出典:2010年電気通信大学 入試問題
この動画を見る 

大学入試問題#594「解法が見えると計算に萎えそう」 南山大学(2019) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\cos^3\theta\sin\theta)e^{-\cos\theta}d\theta$

出典:2019年南山大学 入試問題
この動画を見る 

大学入試問題#344「みるからにあの性質・・・」 富山大学 #定積分 #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{x\ sin\ x}{1+e^{-x}}dx$

出典:富山大学 入試問題
この動画を見る 

東邦大学医学部(2011) #Shorts #King_property #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x}{\sin\ x+\cos\ x} dx$

出典:2011年東邦大学医学部 入試問題
この動画を見る 
PAGE TOP